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Abstract

The paper presents a simple computer-based push-over analysis technique for performance-based design of building

frameworks subject to earthquake loading. The technique is based on the conventional displacement method of elastic

analysis. Through the use of a �plasticity-factor� that measures the degree of plastification, the standard elastic and

geometric stiffness matrices for frame elements (beams, columns, etc.) are progressively modified to account for non-

linear elastic–plastic behavior under constant gravity loads and incrementally increasing lateral loads. The behavior

model accounts for material inelasticity due to both single and combined stress states, and provides the ability to

monitor the progressive plastification of frame elements and structural systems under increasing intensity of earthquake

ground motion. The proposed analysis technique is illustrated for two building framework examples.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

While conventional limit-states design is typically a

two-level design approach having concern for the service-

operational and ultimate-strength limit states for a

building, performance-based design can be viewed as a

multi-level design approach that additionally has explicit

concern for the performance of a building at intermedi-

ate limit states related to such issues as occupancy and

life-safety standards. With the emergence of the perfor-

mance-based approach to design, there is a need to develop

corresponding analysis tools. Nonlinear static (push-over)

analysis is often an attractive choice in this regard because

of its simplicity and ability to identify component and

system-level deformation demands with accuracy compa-

rable to dynamic analysis [5,11,12,14,17].

The present study develops a push-over analysis

procedure based on a continuous nonlinear post-elastic

material model, which provides the capacity to monitor

initial yielding and gradual progressive plastic behavior

of both individual elements and overall structural sys-

tems. The procedure is applicable for the inelastic

analysis of building frameworks having ideal �rigid� or
�pinned� connections, and is adapted from a procedure

originally conceived for the elastic analysis of frame

structures having �semi-rigid� connections. A potential

�plastic-hinge section� of a frame member is treated as a

�pseudo-semi-rigid connection� with predefined nonlin-

ear load-deformation characteristics. The computational

push-over analysis procedure is a formal algorithm for

nonlinear inelastic analysis of rigid frameworks that

proceeds exactly as for nonlinear elastic analysis of semi-

rigid frameworks. The principles of semi-rigid analysis

and their extension to post-elastic analysis are first pre-

sented in the following. The proposed push-over analy-

sis procedure is then presented, and corresponding

computational details are illustrated for two example

building frameworks.

2. Semi-rigid analysis

In an early study concerning semi-rigid frame analy-

sis, [15] modeled the moment-connection at each end

i ¼ 1, 2 of a planar beam-column member as a linear

spring, Fig. 1, and introduced the nondimensional

�rigidity-factor�,* Corresponding author.
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ri ¼
ai

hi
¼ 1

1þ ð3EI=RiLÞ
ði ¼ 1; 2Þ ð1Þ

where Ri is the rotational stiffness of connection i, and

EI and L are the bending stiffness and length of the

connected member, respectively. The rigidity-factor ri
defines the rotational stiffness of the connection relative

to that of the attached member and, as shown in Fig. 1,

can be interpreted as the ratio of the end-rotation ai of

the member to the combined rotation hi of the member

and the connection. From Eq. (1), the rigidity-factor

falls in the range between ri ¼ 1 and ri ¼ 0 as the con-

nection stiffness varies between Ri ¼ 1 and Ri ¼ 0, re-

spectively (infinite stiffness implies that the connection is

perfectly �rigid� in the sense that it fully preserves con-

tinuity of elastic deformation, while zero stiffness implies

that the connection is perfectly �pinned� in the sense that

it freely allows discontinuity of elastic deformation).

Monfortoon and Wu employed the rigidity-factor con-

cept to develop a first-order elastic analysis technique for

semi-rigid frames, where the elastic stiffness matrix K of

each member with �semi-rigid� moment-connections is

found as the product of the standard elastic stiffness ma-

trix Se for a member having �rigid� moment-connections

and a correction matrix C e formulated as a function of

the rigidity-factors r for the two end-connections, i.e.,

K ¼ SeC e ð2Þ

Xu [20] further employed the rigidity-factor concept to

develop a second-order elastic analysis technique for

semi-rigid frames.Here, for eachmemberwith �semi-rigid�
moment-connections, the standard geometric stiffness

matrix Sg for a member with �rigid� moment-connections

is modified by a correction matrix Cg formulated as a

function of the rigidity-factors r for the two end-connec-

tions. The member elastic stiffness matrix K accounting

for both first-order elastic and second-order geometric

properties is then found as, from Eq. (2),

K ¼ SeC e þ SgC g ð3Þ

The matrices C e and Cg appearing in Eqs. (2) and (3)

are illustrated in Appendix A for a planar beam-

column member having semi-rigid moment-connec-

tions.

Having the nonlinear moment-rotation relations that

characterize the variation in rotational stiffness R of

semi-rigid connections under increasing moment (see

[21]), the influence of semi-rigid connection behavior on

the overall behavior of a frame structure under in-

creasing loads can be directly accounted for through an

incremental load analysis. Here, for each finite load in-

crement, the stiffness R of each connection is held con-

stant at its value prevailing at the beginning of the load

step and the conventional displacement method of

elastic analysis is applied for rigidity-factors r found

through Eq. (1) and member stiffness matrices K found

through Eq. (2) or Eq. (3), to find the corresponding

increments of moments and rotations for the structure.

3. Post-elastic analysis

Push-over analysis monitors the progressive stiffness

degradation of a frame structure as it is loaded into the

post-elastic range of behavior. Based on the rigidity-

factor concept described in the foregoing for semi-rigid

analysis, this study proposes to use a �plasticity-factor� to
monitor the progressive plastification (stiffness degrada-

tion) of frame members under increasing loads. Specifi-

cally, any potential �plastic-hinge section� is treated as a

�pseudo semi-rigid connection� whose stiffness variation

is measured by a plasticity-factor p that ranges from

unity (ideal elastic) to zero (fully plastic). As described in

the following, a generic moment–curvature relation is

adopted to characterize the nonlinear variation in post-

elastic flexural stiffness of plastic-hinge sections under

increasing moment.

The post-elastic degradation of the flexural stiffness of

a frame member begins when the material fibers furthest

from the neutral axis of the cross-section experience

initial yielding and, under increasing moment, continues

as plasticity spreads through the section depth and along

the member length to form a fully-developed plastic

hinge, at which point the flexural stiffness of the member

section is exhausted. This degradation in section stiffness

beyond the linear-elastic range of behavior is character-

ized by a nonlinear moment–curvature (M–/) curve of

the form shown in Fig. 2, where Uy is the known curva-

ture when the extreme fibers of the member section ex-

perience initial yielding, /p is the known post-elastic

curvature increment beyond Uy when plasticity first

penetrates through the full depth of the cross-section,

and /u is the known post-elastic curvature increment

beyond Uy when the section reaches an ultimate defor-

mation state corresponding to abrupt loss of some or all

of its flexural strength (e.g., buckling of the compression

flange of a wide-flange steel beam section). With little

error for most section shapes used in building frame-

Fig. 1. Semi-rigid moment-connection.

2484 R. Hasan et al. / Computers and Structures 80 (2002) 2483–2493



works, it can be assumed that the continuous nonlinear

portion of this generic M–/ curve has an elliptical shape

that is defined by the function,

Mð/Þ ¼ My þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMp �MyÞ2 � ððMp �MyÞð/ � /pÞ=/pÞ

2
q

ð4Þ

In Eq. (4), My ¼ Sry and Mp ¼ Zry are the known first-

yield and fully-plastic moment capacities of the member

section, respectively (S and Z are the elastic and plastic

section moduli, respectively, and ry is the expected yield

stress of the material), and / is the post-elastic curvature

increment beyond Uy at any stage between initial yield-

ing (/ ¼ 0) and full plastification (/ ¼ /p) of the cross-

section. From Eq. (4), the post-elastic moment varies in

the range My 6Mð/Þ6Mp as the post-elastic curvature

increment varies in the range 06/6/p.

From Fig. 2, for moment levels less than My the

change in post-elastic curvature d/ ¼ 0 and the post-

elastic section flexural stiffness dM=d/ ¼ 1 (infinite

stiffness implies that the member section fully preserves

continuity of elastic deformation). Conversely, beyond

the point on the M–/ curve where the moment level

reaches Mp the change in post-elastic moment dM ¼ 0

and the post-elastic section flexural stiffness dM=d/ ¼ 0

(zero stiffness implies that the member section has fully

formed a plastic hinge that freely allows rotational dis-

continuity). That is, the post-elastic flexural stiffness

varies in the range 1PdM=d/ P 0 as the cross-section

behavior progresses from initial yielding at the My mo-

ment level (/ ¼ 0) to full plastification at theMp moment

level (/ ¼ /p) and, upon differentiating Eq. (4) with re-

spect to /, is defined by the function,

dMð/Þ
d/

¼
ðMp �MyÞ2ð/p � /Þ

/2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMp �MyÞ2 � ððMp �MyÞð/ � /pÞ=/pÞ

2
q

ð5Þ

From the foregoing, there is evident mathematical

similarity between the model for post-elastic behavior of

a plastic-hinge section and that for the elastic behavior of

a semi-rigid connection. In fact, upon replacing con-

nection rotational stiffness R with section flexural stiff-

ness dM=d/ in Eq. (1), the degradation of the flexural

stiffness of a member section experiencing post-elas-

tic behavior can be characterized by the �plasticity-
factor�,

p ¼ 1

1þ ð3EI=ðdM=d/ÞLÞ ð6Þ

which varies in the range 1P pP 0 as the post-elastic

flexural stiffness varies between that for an ideal elastic

(dM=d/ ¼ 1) and fully plastic (dM=d/ ¼ 0) section,

respectively. Further, upon replacing rigidity-factor r

with plasticity-factor p in the matrices C s and Cg of Eqs.

(2) and (3) that define member stiffness matrixK (e.g., see

Appendix A), the influence of post-elastic section be-

havior on the overall behavior of a frame structure under

increasing loads can be directly accounted for through an

incremental-load analysis procedure similar to that for

elastic semi-rigid analysis, as described in the following:

1. Member stiffness matrices are defined by Eq. (3) or

Eq. (2), depending on whether or not second-order

behavior is to be accounted for.

2. The finite load increment is taken arbitrarily small so

that all member sections of the structure exhibit elas-

tic behavior (p ¼ 1, / ¼ 0) during the initial stage of

the loading history. (The small increment also ensures

that all plastic behavior is accurately identified over

the loading history, including at the end when plastic

collapse of the structure occurs––see point 10.)

3. The post-elastic flexural stiffness dM=d/ of eachmem-

ber section is held constant at its value prevailing at

the beginning of each load step. (As well, the post-

elastic response is maintained monotonic over the load

step in the sense that any occurrence of elastic unload-

ing does not result in stiffness recovery at any member

section previously exhibiting plastic behavior––this

ensures that plasticity-related damage is not artificially

reduced or eliminated during the analysis process.)

4. Upon incrementing the loads, the displacement

method of analysis is applied to find the (accumu-

lated) value of each section moment M at the next

load level.

5. If M 6My then / ¼ 0; otherwise, if M > My then Eq.

(4) is solved for Mð/Þ ¼ M to find the corresponding

value of the post-elastic curvature for the section as,

/ ¼ /p � /p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M �My

Mp �My

� �2
s

ð7Þ

6. In turn, the / value from Eq. (7) is substituted into

Eq. (5) to update the post-elastic flexural stiffness

dM=d/ of the member section to its value prevailing

at the beginning of the next load step (note that if

/P /u from Eq. (7) then / ¼ /p is substituted into

Eq. (5) so that, as shown in Fig. 2, dM=d/ ¼ 0 re-

mains the case even after the moment level abruptly

Fig. 2. Post-elastic moment–curvature relation.

R. Hasan et al. / Computers and Structures 80 (2002) 2483–2493 2485



decreases due to a partial or complete local failure of

the section).

7. The updated dM=d/ value is used to update the sec-

tion plasticity-factor p through Eq. (6). At any stage

of the analysis process, the factor p may be used to

estimate the corresponding percentage extent of sec-

tion plastic behavior through the expression,

% Plasticity ¼ 100ð1� pÞ ð8Þ

8. The updated plasticity factor values pi (i ¼ 1; 2Þ at the
two end-sections of each member are used to update

the member stiffness matrix K through Eq. (2) or

Eq. (3).

9. The structure stiffness matrix is updated and the anal-

ysis procedure is repeated for the next load incre-

ment.

10. The plastification of member sections (p < 1) is pro-

gressively traced over the incremental-load history

until the load level is reached at which a sufficient

number of fully-developed plastic hinges (p ¼ 0) have

formed as to exhaust the stiffness of the structure, in

whole or in part (i.e., the structure stiffness matrix be-

comes singular, which signifies formation of a plastic-

collapse failure mechanism).

Though the foregoing refers to the pure bending case,

the post-elastic analysis procedure is readily extended to

account for combined stress states. For example, con-

sider the case of combined bending momentM and axial

force N for members of planar frameworks. The re-

duction in the moment capacity of a member cross-

section due to the presence of axial force can be

accounted for through the following interaction con-

straint equation, having lower and upper bounds that

correspond to first-yield and fully-plastic behavior, re-

spectively,

1

f
6

M
Mp

þ N
Np

� �m
6 1:0 ð9Þ

where, for the member section, f ¼ Mp=My ¼ Z=S is the

shape factor (e.g., f ¼ 1:12–1:16 for wide-flange steel

beam sections), Np ¼ Ary is the fully-plastic axial force

capacity (where A is the cross-section area) and the ex-

ponent m depends on the section shape (e.g., m ¼ 2 for a

rectangular section). The lower bound for Eq. (9) defines

the first-yield axial force capacity of a member section

to be Ny ¼ ð1=f Þ1=mNp.

Taking m ¼ 1 for the sake of illustration, the two

bounds for Eq. (9) can be viewed as defining the shaded

�plasticity domain� shown in Fig. 3. Assuming that the

ratio M=N remains constant in the post-elastic response

range, identical satisfaction of the lower bound of Eq.

(9) at generic point Oy in Fig. 3 corresponds to first-yield

behavior occurring at the reduced yield moment level

Mr
y ¼ Mp=nf (where n > 1), while identical satisfaction

of the upper bound of Eq. (9) at related point Op in Fig.

3 corresponds to fully-plastic behavior occurring at the

reduced plastic moment level Mr
p ¼ Mp=n ¼ fMr

y . Upon

replacing My and Mp with the reduced moments Mr
y and

Mr
p, Eqs. (4) and (5) then respectively define post-elastic

moment–curvature and flexural-stiffness relations that

account for the influence of axial force on bending

moment capacity of member sections, and the post-

elastic analysis procedure can proceed exactly as de-

scribed in the foregoing for the pure bending case.

4. Proposed push-over analysis

Conventional push-over analysis performed in the con-

text of performance-based seismic design is a compu-

tational procedure where, for static-equivalent loading

consisting of constant gravity loads and monotonically

increasing lateral loads, the progressive stiffness/strength

degradation of a building framework is monitored at

specified performance levels. The analysis procedure is

approximate in that it represents a multi-degree-of-

freedom (MDOF) building system by an equivalent

single-degree-of-freedom (SDOF) system [2,17]. The

fundamental mode of vibration of the MDOF system is

often selected as the response mode of the equivalent

SDOF system. The selected vibration response mode is

the basis for estimating the distribution of static-equi-

valent lateral inertia loads applied over the height of

the building.

Specified deformation states are often taken as a

measure of building performance at corresponding load

levels [19]. For example, the US Federal Emergency

Management Agency [6] identifies operational, im-

mediate-occupancy, life-safety and collapse-prevention

performance levels, and adopts roof-level lateral drift at

Fig. 3. Plasticity under combined bending moment and axial

force.
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the corresponding load levels as a measure of the asso-

ciated behavior states of the building. The increasing

degrees of damage that a building experiences at the

various performance levels are associated with earth-

quakes having increasing intensities of horizontal

ground motion (see examples).

The horizontal ground motion intensity of an earth-

quake defines the spectral response acceleration Sa of a

building in the lateral direction, which may be trans-

formed into a total horizontal base shear force as [4],

V ¼ Sa
g
W ð10Þ

where g is the gravitational constant and W is the total

weight of the building. The shear force V is in equilib-

rium with a distribution of lateral inertia forces F ap-

plied over the vertical height of the building, which, for

example, FEMA [6] defines as,

Fx ¼ CvxV ð11aÞ

Cvx ¼
wxhkxPn
i¼1 wihki

ð11bÞ

where Fx is the lateral load applied at story level x, and

Cvx is the corresponding vertical distribution factor de-

fined by: gravity loads wx and wi ¼ the portions of the

total building weight at story levels x and i, respectively;

vertical distances hx and hi ¼ the heights from the base

of the building to story levels x and i, respectively; the

total number n of stories; and an exponent k whose

value depends on the fundamental period of the build-

ing.

The push-over analysis proposed by this study is

based on the post-elastic analysis procedure described in

Section 3. The procedural steps are here illustrated for

the four building performance levels [6] mentioned in the

foregoing and indicated in the flow chart shown in Fig.

4. The structure data describes the dimensions and

numbers of bays and stories (L, h, n, etc.) and the types

of connections and supports (fixed, pinned, etc.) for the

building. The member data describes the cross-section

properties for the beams, columns and other structural

components of the building (A, E, I, S, Z, m, ry , Uy , /p,

/u, etc.). The load data describes the gravity loads

and building weight (w;W ), as well as the distribution

of incremental lateral inertia loads DF precalculated

through Eqs. (10)–(11b) for arbitrarily small spectral

acceleration Sa and prescribed exponent k (see Exam-

ples). The performance data describes the parameters

that quantify the performance levels for the building.

For this study, the operational performance level is as-

sociated with the onset of initial yielding; i.e., all p ¼ 1

and M ¼ My or Mr
y for at least one member section of

the building. The immediate-occupancy, life-safety and

collapse-prevention performance levels are associated

with the building reaching corresponding target roof-

level lateral displacements dIO, dLS and dCP, respectively

(see Examples).

The gravity loads on the building remain constant for

the analysis. The structure stiffness matrix is initially

formed by member stiffness matrices defined by Eq. (2)

assuming linear elastic behavior of the building (all

p ¼ 1). After each lateral load increment the structure

stiffness matrix is formed by member stiffness matrices

defined by Eq. (3), for updated plasticity factors (p < 1)

from Eq. (6) and updated axial forces (N 6¼ 0) from the

analysis results, to account for nonlinear post-elastic

behavior and second-order geometric stiffness effects (see

Appendix A), under single or combined stresses (e.g., see

Eq. (9)). The lateral loads are progressively increased

through the different performance levels until the lateral

displacement at the roof level of the building reaches the

target value associated with the collapse-prevention level

(droof ¼ dCP), at which point the push-over analysis ter-

minates. The structure, member and load results found

at each building performance level are provided as

output from the analysis. The lateral nodal displace-

ments reached at each performance level define the

Fig. 4. Push-over analysis flow chart.
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corresponding overall and interstory ductility demands

(DD) imposed on the building, i.e.

Overall DDroof ¼
droof

dyield

ð12aÞ

Interstory DDx ¼
dx � dx�1

ðdx � dx�1Þyield
ð12bÞ

where dyield ¼ roof lateral displacement at the opera-

tional performance level defined by the onset of initial

yielding of the structure, droof ¼ roof lateral displace-

ment dyield, dIO, dLS or dCP depending on the performance

level of concern, dx � dx�1 ¼ interstory drift of story x at

the performance level of concern (dx and dx�1 ¼ lateral

displacements at story-levels x and x� 1, respectively),

and ðdx � dx�1Þyield ¼ interstory drift of story x at the

loading level when initial yielding of the story occurs

(i.e., p ¼ 1 for all members comprising the story, but

M ¼ My or Mr
y for at least one member section). The

push-over analysis results at each building performance

level also include the corresponding spectral acceleration

Sanalysis
a ¼ Vg=W calculated through Eq. (10), where the

base shear force V is equal to the total of the lateral

loads applied at the performance level.

5. Examples

Consider the three-story and nine-story steel mo-

ment-frames shown in Figs. 5 and 6. These frames have

been previously studied in the literature and, unless

noted or referenced otherwise, the data and information

ascribed to them in the following is due to [9,10]. The

two frameworks have rigid moment-connections and

fixed supports, and are perimeter frames of buildings

designed in accordance with the earthquake provisions

of the Uniform Building Code [18]. The fundamental

period for the three-story frame is 1.01 s, while that for

the nine-story frame is 2.34 s.

The properties of each of the different W-shape beam

and column members indicated in Figs. 5 and 6 are

available in manuals of the American Institute of Steel

Construction [1], and include the elastic modulus E and

expected yield stress ry of the material and the area A,

moment of inertia I, elastic modulus S and plastic

modulus Z of the cross-section. The post-elastic curva-

ture increment beyond the first-yield curvature Uy when

plasticity first penetrates through the full depth of a

member cross-section is taken to be /p ¼ 0:045 radians

[3], while the value of the ultimate post-elastic curvature

increment /u is set arbitrarily large so that member

sections do not experience abrupt local failure (see Fig.

2). The combined influence of bending moment M and

axial force N on plastic behavior is accounted for

through Eq. (9) for exponent m ¼ 1 (see Fig. 3).

The constant gravity load intensities w indicated for

the roof and floor beams in Figs. 5 and 6 include ac-

count for a tributary-area width of 15 feet and dead-

load and live-load factors of 1.2 and 1.6, respectively

[1]. As indicated in Table 1, the initial base shear forces

V shown in Figs. 5 and 6 are calculated through Eq.

(10) for an arbitrarily small spectral acceleration Sa ¼
0:0008g and given story weights wx (which, at each story

level x, include account for a tributary area equal to one-

half the floor plan of the building, while wx at the roof

level also accounts for a penthouse). The individual

story-level lateral load increments DFx indicated in Table

1 are calculated through Eqs. (11a) and (11b) for ex-Fig. 5. Three-story steel moment-frame.

Fig. 6. Nine-story steel moment-frame.
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ponent k ¼ 2 to form the parabolic load distributions

shown in Figs. 5 and 6. The total lateral load increment

DF ¼ RDFx applied for each iteration of the push-over

analysis is equal to the initial base shear force V.

The results of the push-over analyses for the two

frames are summarized in Tables 2 and 3 and illustrated

in Figs. 7–9. Roof lateral displacements at the various

performance levels are given in the third column of Table

2, where displacement dyield reached at the operational

level corresponds to the onset of initial yielding of the

frame, displacements dIO, dLS and dCP reached at the

Table 2

Push-over analysis results

Building Performance level Roof displacement (in.) Ductility demand

(droof=dyield)

Base shear

force V (kip)

Spectral acceleration

(Sanalysis
a ¼ Vg=W )

Three-story Operational dyield ¼ 1:727 1.00 384.50 0.1184g

Immediate occupancy dIO ¼ 3:276 1.89 709.07 0.2183g

Life safety dLS ¼ 11:700 6.77 1133.35 0.3489g

Collapse prevention dCP ¼ 23:400 13.55 1197.40 0.3687g

Complete collapse dcollapse ¼ 1 1 1200.28 0.3695g

Nine-story Operational dyield ¼ 6:475 1.00 746.55 0.0751g

Immediate occupancy dIO ¼ 10:248 1.58 1116.09 0.1124g

Life safety dLS ¼ 36:600 5.65 1441.77 0.1452g

Collapse prevention dCP ¼ 73:200 11.31 1458.55 0.1469g

Complete collapse dcollapse ¼ 1 1 1469.27 0.1479g

Table 3

Extent of plastic behavior

Building Performance level Number of sections

(n% plasticity)

n < 100% n ¼ 100%

Three-story Immediate occu-

pancy

3 2

Life safety 15 15

Collapse prevention 3 27

Nine-story Immediate occu-

pancy

33 1

Life safety 48 48

Collapse prevention 30 67
Fig. 7. Performance-level plastic behavior of three-story frame.

Table 1

Story-level distribution of lateral load increments

Building Story level (x) Story weight

wx (kip)

Initial base shear

V ¼ 0:0008 Rwx (kip)

Distribution factors

Cvx [Eq. (11b)]

Load increments

DFx ¼ CvxV (kip)

Three-story 1 1054 2.598 0.068 0.177

2 1054 0.271 0.704

Roof 1140 0.661 1.717

Nine-story 1 1111 7.945 0.006 0.048

2 1092 0.017 0.135

3 1092 0.035 0.278

4 1092 0.059 0.469

5 1092 0.089 0.707

6 1092 0.124 0.985

7 1092 0.166 1.319

8 1092 0.215 1.708

Roof 1176 0.289 2.296
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immediate-occupancy, life-safety and collapse-preven-

tion levels are target values equal to 0.7%, 2.5% and 5%

of the frame height, respectively [6], and dcollapse ¼ 1
signifies the frame has reached the loading level at which

it fails in a plastic mechanism mode. The overall ductility

demands imposed on the frames at the various perfor-

mance levels are found through Eq. (12a) and given in

the fourth column of Table 2, where droof ¼ dyield, dIO, dLS

or dCP depending on the performance level, and ductility

demand ¼ 1 at the complete-collapse level signifies

failure of the frame. (Interstory ductility demands cal-

culated through Eq. (12b) are not presented here in the

interest of brevity). The fifth column of Table 2 lists the

total base shear forcesV (i.e., total lateral inertia loads F)

acting on the two frames at the various performance

levels (note for both frames that the magnitude of the

base shear force at the collapse-prevention level is only

slightly less than that at which complete collapse occurs).

The spectral accelerations Sanalysis
a listed in the sixth col-

umn of Table 2 for the various performance levels are

found through Eq. (10) for base shear forces V from

column five of Table 2 and frame total weight W ¼
P

wx

from column three of Table 1.

Figs. 7 and 8 illustrate the progressive occurrence and

extent of plastic behavior at the various performance

levels for the frames, where the degrees of plastification

indicated for the member sections are found through Eq.

(8) for the prevailing values of the plasticity-factor for

partially (1 > p > 0) and fully (p ¼ 0) plastic sections,

respectively. Plastic yielding occurs at base-support

sections of first-story column members and at both

end-sections of beam members, which signifies strong-

column and weak-beam behavior typical of earthquake-

resistant building construction. It is of interest to note

Fig. 8. Performance-level plastic behavior of nine-story frame.

Fig. 9. Push-over curves.
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that plastic yielding also occurs at mid-span of the left-

most roof beam for both frames. The plastic behavior

results are further summarized in Table 3. The normal-

ized push-over curves illustrated for the two frames in

Fig. 9 are derived from the results listed in columns three

and five of Table 2, where hroof ¼ frame total height (see

Figs. 5 and 6).

6. Concluding remarks

The paper has presented a simple computer-based

method for push-over analysis of steel building frame-

works subject to equivalent-static earthquake loading.

The method accounts for first-order elastic and second-

order geometric stiffness properties, and the influence

that combined stresses have on plastic behavior, and

employs a conventional elastic analysis procedure mod-

ified by a �plasticity-factor� to trace elastic–plastic be-

havior over the range of performance levels for a

structure. The plasticity-factor is shown analogous to a

similar rigidity-factor for elastic analysis of semi-rigid

frames, and the stiffness properties for semi-rigid anal-

ysis are directly adopted for push-over analysis. While

illustrated for planar frames, the concepts are readily

extended to three-dimensional frames by expanding the

stiffness matrices given in Appendix A from 6 to 12

degrees-of-freedom and expressing the stiffness elements

in terms of in-plane and out-of-plane plasticity-factors

[13], and by adopting three-dimensional yield criteria to

govern plastic behavior of members under combined

stress states involving axial force, biaxial moments and/

or torsional moment [8].

Two worked examples illustrate that push-over

analysis provides valuable information for the perfor-

mance-based seismic rehabilitation of existing steel mo-

ment-frame buildings. Among other results, the overall

ductility demands found through Eq. (12a) provide a

basis for checking compliance with global ductility limits,

the interstory ductility demands found through Eq. (12b)

serve to identify the existence of �soft� stories, while the

Sanalysis
a values in Table 2 provide a means to assess the

adequacy of the earthquake-resistant capacity of a

building for corresponding seismic events. The proposed

push-over analysis procedure is also an effective tool for

the performance-based seismic design of new steel mo-

ment-frame buildings; [7].
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Appendix A

For first-order behavior, the stiffness matrix for a

member with semi-rigid moment-connections at its ends

can be represented as [15]

K ¼ SeC e ðA:1Þ

or, for first- and second-order behavior, as [20]

K ¼ SeC e þ SgCg ðA:2Þ

where Se and Sg are respectively the standard first-order

elastic and second-order geometric stiffness matrices

when the member has �rigid� moment-connections, and

C e and Cg are corresponding correction matrices that

account for the reduced rotational stiffnesses of the

�semi-rigid� moment-connections.

Matrices C e and C g are illustrated in the following

for the planar beam-column member in Fig. 10, where E

is Young�s modulus, A and I are respectively the area

and moment of inertia of the member cross-section, L is

the member length, and R1 and R2 are the semi-rigid

rotational stiffnesses at the two ends of the member. A,

so-called, flexural rigidity-factor r at each end i of the

member is defined as [15]

ri ¼
ai

hi
¼ 1

1þ ð3EI=RiLÞ
ði ¼ 1; 2Þ ðA:3Þ

where ai is the member rotation and hi is the total ro-

tation of the connection and the member.

The first-order correction matrix is

C e ¼
1

ð4� r1r2Þ

e11 0 0 0 0 0
0 e22 e23 0 0 0

0 e32 e33 0 0 0

0 0 0 e44 0 0

0 0 0 0 e55 e56
0 0 0 0 e65 e66

2
6666664

3
7777775

Fig. 10. Planar beam-column member.
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where,

e11 ¼ e44 ¼ 4� r1r2; e22 ¼ 4r2 � 2r1 þ r1r2

e23 ¼ �2Lr1ð1� r2Þ; e33 ¼ 3r1ð2� r2Þ

e32 ¼ e65 ¼
6

L
ðr1 � r2Þ; e55 ¼ 4r1 � 2r2 þ r1r2

e56 ¼ 2Lr2ð1� r1Þ; e66 ¼ 3r2ð2� r1Þ

Having C e and knowing Se (see, e.g., [16]), from Eq.

(A.1) the first-order elastic stiffness matrix for the

member with semi-rigid moment-connections is

K ¼ SeC e

¼ 1

ð4� r1r2Þ

K11 0 0 K14 0 0

K22 K23 0 K25 K26

K33 0 K35 K36

SYM K44 0 0

K55 K56

K66

2
6666664

3
7777775

where,

K11 ¼ �K14 ¼ �K41 ¼ K44 ¼
EAð4� r1r2Þ

L

K22 ¼ �K25 ¼ �K52 ¼ K55 ¼
12EIðr1 þ r2 þ r1r2Þ

L3

K23 ¼ K32 ¼ �K35 ¼ �K53 ¼
6EIr1ð2þ r2Þ

L2

K26 ¼ K62 ¼ �K56 ¼ �K65 ¼
6EIr2ð2þ r1Þ

L2

K33 ¼
12EIr1

L
; K36 ¼ K63 ¼

6EIr1r2
L

; K66 ¼
12EIr2

L

The second-order correction matrix is

Cg ¼
1

5ð4� r1r2Þ2

0 0 0 0 0 0

0 1 0 0 0 0

0 g32 g33 0 g35 g36
0 0 0 0 0 0

0 0 0 0 1 0
0 g62 g63 0 g65 g66

2
6666664

3
7777775

where,

g32 ¼ �g35

¼ �4

L
8r21r2
�

� 13r1r22 � 32r21 � 8r22 þ 25r1r2 þ 20
�

g33 ¼ r1 16r22
�

þ 25r1r22 � 96r1r2 þ 128r1 � 28r2
�

g36 ¼ 4r2 16r21
�

� 5r21r2 þ 9r1r2 � 28r1 þ 8r2
�

g62 ¼ �g65

¼ �4

L
8r1r22
�

� 13r21r2 � 32r22 � 8r21 þ 25r1r2 þ 20
�

g63 ¼ 4r1 16r22
�

� 5r1r22 þ 9r1r2 þ 8r1 � 28r2
�

g66 ¼ r2 16r21
�

þ 25r21r2 � 96r1r2 � 28r1 þ 128r2
�

Having Cg and knowing Sg (see, e.g., [16]), from Eq.

(A.2) the second-order geometric stiffness matrix for the

member with semi-rigid moment-connections is

SgCg ¼
N

5ð4� r1r2Þ2

0 0 0 0 0 0

G22 G23 0 G25 G26

G33 0 G35 G36

0 0 0
SYM G55 G56

G66

2
6666664

3
7777775

where N ¼ member axial force and,

G22 ¼
2

L
3r21r

2
2

�
þ r21r2 þ r1r22 þ 8r21 þ 8r22 � 34r1r2 þ 40

�
G23 ¼

1

2
r21r

2
2

�
� 12r21r2 þ 16r1r22 � 28r1r2 þ 32r21

�
G33 ¼ 2L 2r21r

2
2

�
� 7r21r2 þ 8r21

�
G36 ¼

�L
2

7r21r
2
2

�
� 16r21r2 � 16r1r22 þ 28r1r2

�
G22 ¼

1

2
r21r

2
2

�
� 12r1r22 þ 16r21r2 � 28r1r2 þ 32r22

�
G66 ¼ 2L 2r21r

2
2

�
� 7r1r22 þ 8r22

�
G55 ¼ �G25 ¼ G22; G35 ¼ �G23; G56 ¼ �G26

Note: The rigidity-factors r in the foregoing matrices

for semi-rigid analysis are interchangeable with plastic-

ity-factors p for push-over analysis.
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