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Preface 
 
 
 

Today the finite element method (FEM) is considered as one of the well established 
and convenient technique for the computer solution of complex problems in different fields 
of engineering: civil engineering, mechanical engineering, nuclear engineering, biomedical 
engineering, hydrodynamics, heat conduction, geo-mechanics, etc. From other side, FEM 
can be examined as a powerful tool for the approximate solution of differential equations 
describing different physical processes. 

The success of FEM is based largely on the basic finite element procedures used: the 
formulation of the problem in variational form, the finite element dicretization of this 
formulation and the effective solution of the resulting finite element equations. These basic 
steps are the same whichever problem is considered and together with the use of the digital 
computer present a quite natural approach to engineering analysis. 

The objective of this course is to present briefly each of the above aspects of the 
finite element analysis and thus to provide a basis for the understanding of the complete 
solution process. According to three basic areas in which knowledge is required, the course 
is divided into three parts. The first part of the course comprises the formulation of FEM 
and the numerical procedures used to evaluate the element matrices and the matrices of the 
complete element assemblage. In the second part, methods for the efficient solution of the 
finite element equilibrium equations in static and dynamic analyses will be discussed. In 
the third part of the course, some modelling aspects and general features of some Finite 
Element Programs (ANSYS, NISA, LS-DYNA) will be briefly examined. 
 To acquaint more closely with the finite element method, some excellent books, like 
[1-4], can be used. 
 
 
 
 
 
Evgeny Barkanov 
 
Riga, 2001 
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PART I     THE FINITE ELEMENT METHOD 
 
 
 
 
 
Chapter 1     Introduction 
 
 
 
1.1 Historical background 
 

In 1909 Ritz developed an effective method [5] for the approximate solution of 
problems in the mechanics of deformable solids. It includes an approximation of energy 
functional by the known functions with unknown coefficients. Minimisation of functional 
in relation to each unknown leads to the system of equations from which the unknown 
coefficients may be determined. One from the main restrictions in the Ritz method is that 
functions used should satisfy to the boundary conditions of the problem. 

In 1943 Courant considerably increased possibilities of the Ritz method by 
introduction of the special linear functions defined over triangular regions and applied the 
method for the solution of torsion problems [6]. As unknowns, the values of functions in 
the node points of triangular regions were chosen. Thus, the main restriction of the Ritz 
functions – a satisfaction to the boundary conditions was eliminated. The Ritz method 
together with the Courant modification is similar with FEM proposed independently by 
Clough many years later introducing for the first time in 1960 the term “finite element” in 
the paper “The finite element method in plane stress analysis” [7]. The main reason of 
wide spreading of FEM in 1960 is the possibility to use computers for the big volume of 
computations required by FEM. However, Courant did not have such possibility in 1943. 

An important contribution was brought into FEM development by the papers of 
Argyris [8], Turner [9], Martin [9], Hrennikov [10] and many others. The first book on 
FEM, which can be examined as textbook, was published in 1967 by Zienkiewicz and 
Cheung [11] and called “The finite element method in structural and continuum 
mechanics”. This book presents the broad interpretation of the method and its applicability 
to any general field problems. Although the method has been extensively used previously 
in the field of structural mechanics, it has been successfully applied now for the solution of 
several other types of engineering problems like heat conduction, fluid dynamics, electric 
and magnetic fields, and others. 
 
 
1.2 Comparison of FEM with other methods 
 

The common methods available for the solution of general field problems, like 
elasticity, fluid flow, heat transfer problems, etc., can be classified as presented in Fig. 1.1. 
Below FEM will be compared with analytical solution of differential equation and Ritz 
method considering the shaft under tensile load (Fig. 1.2). 
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Analytical Numerical

Exact Approximate FEMNumerical solution

Numerical integration Finite differences

(e.g. separation of variables
and Laplace transformation
methods)

(e.g. Rayleigh-Ritz and Galerkin
methods)

Methods

 
Fig. 1.1   Classification of common methods. 

 
 
1.3 Problem statement on the example of “shaft under tensile load” 
 

The main task of the course “Strength of Materials” is determination of dimensions 
of a shaft cross section under known external loads. Applying the general plan for the 
solution of problems in the field of mechanics of deformable solids, tree group of 
equations should be written: 
 
1) equilibrium equations (statics) 
The equilibrium equation for the separate element with the length dx has the following 
form 

∑ = 0X      or      0)( =+++− qdxFdF σσσ

After some transformations we have 

0=+ qF
dx
dσ  

Taking into account that E
dx
duE == εσ  we obtain the static equilibrium equation 

02

2
=+ qEF

dx
ud  

 
2) geometric equations 

dx
du

=ε  

 
3) physical equations 

Eεσ =  
 
From this system of equations it is possible to determine all necessary values. 
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Fig. 1.2   Shaft under tensile load. 

 
 

Another approach for the solution of the problem examined exists also. This is 
utilisation of the principle of “minimum of the potential energy” which means: a system is 
in the state of equilibrium only in the case when it potential energy is minimal. Correctness 
of this principle may be observed on the following simple examples: 
- a ball is in the state of equilibrium only in the lower point of surface (Fig. 1.3),  
- a water on the rough surface takes the equilibrium state in the lower position,  
- a student tries to take examination with the minimum expenditures of labour.  
From the condition that the potential energy takes the minimum, it is possible to determine 
the unknown values. The general algorithm of solution in this case is following: 
1) an expression for the potential energy of elastic system under external loads is written, 
2) conditions of minimum of the potential energy are written, 
3) unknown values are determined from the condition of minimum, 
4) a strength problem is solved. 
 
 
 

P

PR

R

Π

Π min

∆ ∆
 

Fig. 1.3   Principle of “minimum of the potential energy”. 
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Complete potential energy of the deformable system consists from the strain energy U 
stored in the system and energy W lost by the external forces (Fig. 1.4). That is why the 
work of the external forces W is negative value 

WU −=Π  

Since the tension of a shaft is examined, U is the potential energy of tension. Then for the 
tension we have 

∆∆∆Π PPPWU
2
1

2
1

−=−=−=  

The force loses energy , but the shaft acquires the tensile energy ∆P− )P( ∆21 . The 
second part goes on overcoming the friction forces, internal heat, changes into kinetic 
energy, etc. After removal of load, the system can gives back only the energy equal to the 
potential energy of tension 

∆PU
2
1

=  

 
 

+

-

-

P

P

-P

U

W

Π

∆
∆

PH H-∆

∆

W-PPH-)-P(H == ∆∆
final initial

 
Fig. 1.4   Energy balance. 

 

Π

u(x)δu(x)

Π(u+δu)
Π(u)

δΠ

 
Fig. 1.5 Variational formulation. 
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1.4 Variational formulation of the problem 
 

A numerical value of the potential energy of tension  is dependent 
from the function  to be used. Because  is a functional, since a functional is a 
value dependent from the choice of function. This can be explained by the help of Fig. 1.5. 
In the lower point, an infinitesimal change of the function  equalled to δ  will not 
give an increase of the functional δ . In the point of minimum: δ . Free changes of 

 are called the variations. The mathematical condition of the minimum of potential 
energy can be written as . How it can be seen, variation in the case of functional 
investigation has the same meaning as differential in the case of function investigation. 

WU −=Π

0=Π

)x(u Π

)x(u )x(u
Π

Πδδ  ,u
0=Πδ

Let’s investigate the functional  of a tensile shaft under distributed load q Π

∫ ∫−





=−=

l l
qudxdx

dx
duEFWU))x(u(

0 0

2

2
1

Π  

 

   ∫ ∫ ∫ ∫ ∫ 





=====

l l l l l
dx

dx
duEFdxEFdx

EF
FEdx

EF
Fdx

EF
N

0 0 0 0 0

2
2

222222

2
1

2
1

222
ε

εσU  

 
Let’s determine the variation δ  as a difference of two values – the potential energy with 
and without increment δ  

Π
u

∫ ∫ =−













=−+=

l l
udxqdx

dx
du

dx
duEF)u()uu(

0 0
2

2
1

δδΠδΠΠδ

∫∫∫ ∫ −











−=−














=

ll
l
o

l l
dx

dx
uduu

dx
duEFudxqdx

dx
ud

dx
duEF

00
2

2

0 0
δδδ

δ
=udxq 0δ  

 

   
dx
du

=t ;    us δ=

   Integration by parts: 

   ∫ ∫−=
l l

l dx'ststtdx's
0 0

0  

 
The potential energy will has the minimum value, if , or by other words, if all 
items equal to zero in the last expression. 

0=Πδ

Boundary conditions for our problem are: 
1)  0   0 == u:x

2) 0   ==
dx
du:lx  

At all length l: δ . 0≠u
Applying these boundary conditions to the variation of the functional , we obtain Π

∫ ∫ ∫ =









+−=−−

l l l
dxq

dx
udEFuudxqdx

dx
uduEF

0 0 0
2

2

2

2
0δδδ  
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This equation can be solved if 02

2
=+ q

dx
udEF . Moreover, this condition presents the 

static equilibrium equation. Expressions obtained show that the potential energy of system 
has the minimum, if: 
1) the equilibrium equations will be realised 
2) the boundary conditions will be realised 
The second boundary conditions, so called as natural boundary conditions for the 
functional , since they are obtained from the minimum of functional, realise 
automatically. But it is necessary to satisfy without fail to the first boundary conditions. 
Otherwise, these conditions are not taken into account anywhere. These boundary 
conditions are called principal. In the case of beam bending: 

Π

- natural conditions are forces, 
- principal conditions are displacements. 

The problem of determination of  can be solved by two ways: )x(u
1) by solution of the differential equation, 
2) by minimising the functional . Π
Solving the problem by the approximate methods using computers, the second way is more 
suitable.  
 
 
1.5 Ritz method 
 

By the Ritz method it is possible to determine an approximate . An unknown 
function of displacements u  is found in the form 

Π min
)x(

∑=
k

kk )x(a)x(u ϕ  

where  are coefficients to be determined, ϕ  are coordinate functions given so that 
they satisfy to the principal boundary conditions. By insertion u  into functional  
and then to integrate, it is possible the problem of the functional minimisation to come to 
the problem of determination the function minimum  from unknowns . To 
minimise the function of the potential energy obtained, it is necessary to equate to zero the 
derivatives on  

ka )x(k
)x(

)

Π

a( kΠΠ = ka

ka

...   0   0   0
321

,
a

,
a

,
a

=
∂
∂

=
∂
∂

=
∂
∂ ΠΠΠ  

After this operation, the system of algebraic equations is obtained and solved to find the 
unknowns . In the Ritz method, the choice of function u  closed enough to a truth is 
a complicated problem requiring a good idea of the result expected. 

ka )x(
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axu =
0   0 == u,x

[ ]
22

1
2
1 2

2

0 0

2 lqalEFaqudxdx
dx
duEF)x(u

l l
−=−






= ∫ ∫Π

constq = a
dx
du

=

0
2

2
=−=

∂
∂ qlEFal

a
Π

EF
ql

EFl
qla

22

2
==

x
EF
qlu

2
=

EF
ql

dx
du

2
==ε

F
qlE
2

== ε

EF
ql)l(u
2

2
=

EF
qllu
42

2
=








2
21 xaxa +=

0   0 == u,x
[ ] ...)x(u =Π

0
1

=
∂
∂

a
Π 0

2
=

∂
∂
a
Π

21  and aa

 
Example 1.1 
 
1)  
The principal boundary conditions: . 

 

 

   ;    

 

,   hence    

;   ;   σ  

;    

 
2) u  
The principal boundary conditions: . 

 

;    

Then the system consisting from 2 linear algebraic equations is solved and unknown 
coefficients  are determined. 

 
 

After this example, it is possible to write the general algorithm of the Ritz method: 
1) Presentation of Π . 
2) Determination of boundary conditions. 
3) Approximation for all construction. 
4) Integration of Π  for all construction. 
5) Determination of the minimum of . Solution of the system of linear algebraic 

equations. 
Π

6) Calculation of displacements. 
7) Calculation of stresses. 

For a beam with few areas, it is more easily to guess the deflection function for 
separate areas than for the whole of beam. Moreover, the function for one area will be a 
more simple than for the whole of beam. The idea of division of the investigated object is 
used in FEM. In the Ritz method, the accuracy can be increased choosing more terms of 
the approximated function, but in FEM – increasing the quantity of finite elements. To 
simplify the problem solution by computer, the finite elements and approximated functions 
are chosen the same. 
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1.6 Solution of differential equation (analytical solution) 
 

Analytical solution means determination of the displacement function u  from the 
equilibrium equation. 

)x(

 
 

Example 1.2 
 

02

2
=+ q

dx
udEF  

 
To solve the problem of  determination it is necessary to satisfy to the 
following boundary conditions: 

)x(u

1)  0u   0 == :x

2) 0
dx
du   == :lx  

 

EF
q

dx

ud
−=

2

2
 

 
After integration we obtain 

11 C
EF
qxCdx

EF
q

dx
du

+−=+−= ∫  

21
2

2
CxC

EF
qxu ++−=  

 
The constants are determined using the boundary conditions: 

1) 0
2 21

2
=++− CxC

EF
qx ;    02 =C

2) 01 =+− C
EF
ql ;   

EF
qlC =1  

 
Then we have 

EF
qlx

EF
qxu +−=
2

2
 

EF
ql

EF
ql

EF
ql)l(u

22

222
=+−=  

EF
ql

EF
ql

EF
qllu

8
3

282

222
=+−=






  

F
ql

F
qxE

dx
duE +−=== εσ  

EF
ql

EF
qx

dx
du

+−==ε  
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1.7 FEM 
 

FEM was treated previously as a generalisation of the displacement method for shaft 
systems. For a computation of beams, plates, shells, etc. by FEM, a construction is 
presented in a view of element assembly. It is assumed that they are connected in a finite 
number of nodal points. Then it is considered that the nodal displacements determine the 
field of displacements of each finite element. That gives the possibility to use the principle 
of virtual displacements to write the equilibrium equations of element assembly so, as 
made for a calculation of shaft systems. 

Let’s have a look the finite element of tensile shaft (Fig. 1.6). The displacement 
function can be chosen in the following form 

xCCu 10 +=  

Using boundary conditions for a single finite element in his local coordinate system, we 
have 

01 Cu =  

lCCu 102 +=  

Now our purpose to express coefficients through the nodal displacements of the finite 
element 

10 uC =  

l
uuC 12

1
−

=  

Then the displacement function for a single finite element can be written in the following 
form 

)x(Nu)x(Nu
l
xu

l
xux

l
uuuu 221121

12
1 1 +=+






 −=

−
+=  

 

   
l
x)x(N,

l
x)x(N =−= 21    1  - nodal functions. 

 
 

L

x

q

u1

u2

1

2

(i)

(i+1)

x

q l

 
Fig. 1.6   Finite element of tensile shaft. 
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 The potential energy of the finite element can be expressed as follows 

∫ ∫ =−





=

l l
e qudxdx

dx
duEF

0 0

2

2
1

Π  

( ) ( ) −













++= ∫ ∫ ∫

l l l
dx)x('Nudx'N)x('Nuudx)x('NuEF

0 0 0

2
2

2
22121

2
1

2
1 2

2
1  

{ } { }∫∫ +−++=+−
ll

FuFuuKuuKuK)dx)x(Nqudx)x(Nqu(
0

2211
2
2222112

2
11122

0
11 2

2
1

 

 

   )x('Nu)x('Nu
dx
du

2211 +=  

   
l

)x('N 1
1 −=  

   
l

)x('N 1
2 =  

 
 
 

   ( )∫ ===
l

l
EFl

l
EFdx)x('NEFK

0
2

2
111

1  

   ∫ −=





−==

l

l
EFl

ll
EFdx)x('N)x('NEFK

0
2112

11  

   ( )∫ ===
l

l
EFl

l
EFdx)x('NEFK

0
2

2
222

1  

    - elements of the stiffness matrix. ijK
 
 

   ∫ ∫ =





 −=










−=






 −==

l l l
qlllq

l
xxqdx

l
xqdx)x(NqF

0 0 0

2
11 222

1  

   ∫ ∫ ====
l ll ql

l
xqdx

l
xqdx)x(NqF

0 0

2

0
22 22

 

    - nodal forces. iF
 
Now the potential energy of the finite element presents the function of his nodal 
displacements 

)u,u(ee
21ΠΠ =  
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Let’s rewrite the potential energy of finite element in the matrix form 

{ } { } eeTeeeT FddKd −=








−
















=

2
1

2
1

2

1
21

2

1

2221

1211
21 F

F
uu

u
u

KK
KK

uueΠ  

                                                                                                                                                       1x2   2x2   2x1       1x2  2x1 
 
 

   d  








=
2

1
u
ue

   
















=








=

2

2
2

1
ql

ql

F
FeF  

   







−

−
=








=

11
11

2221

1211
l

EF
KK
KKeK  

 
 
 Then it is possible to determine the potential energy of structure consisting from the 
separate energies of the finite elements 

∑
=

−==
N

l

e

1 2
1 FdKdd TTΠΠ  

where  is the stiffness matrix of construction as a sum of stiffness matrices of 

separate finite elements, d  is the vector of nodal unknowns of construction, F  is the 
vector of given external nodal forces. By this way, the potential energy of structure is 
expressed in a view of function dependent on unknown nodal displacements d . The 
condition of the functional minimum turns into condition the function minimum  

∑
=

=
N

eKK
1e

)(Π d

0=
∂
∂

iu
Π  

Solution of this system is unknown displacements 

FKd 1−=  

It is necessary to note that solving the present system of equations, it is necessary to take 
into account conditions of structure supports, that is to say the principal boundary 
conditions. After determination of the nodal displacements d , the internal forces and 
stresses  are computed. Then they are used for a valuation of the structure’s strength. σ
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Example 1.3 
 

L q

x
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2

3

2
0 11

qlF;u ==

qlqlqlFFFu III =+=+=
22

; )1()2(22

2
; )2(33

qlFFu II ==
lL

=
2

- length of FE

I

II

 
Fig. 1.7   Finite element model of shaft under tensile load. 

 
 
The potential energy of shaft under tensile load can be expressed as follows 

 

 

 

 
                                                                                                                                     1x2  2x2  2x1  1x2  2x1 
 
    

                        - in the global coordinate system. 

    
 
 

   ;     ;     F  

   ;      
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Now it is necessary to determine the nodal displacements of the structure using the 
principle of “minimum of the potential energy”. 
 
 

 
Fig. 1.8   Possible solution. 

 
 
These unknowns are determined from the following system of linear algebraic 
equations 

 

 

     since l , then we have      

 
Stresses can be calculated by the following way 
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Example 1.1, 1.2, 1.3 
 
Let’s compare the analytical solution with the solution obtained by FEM and Ritz 
methods.  
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Fig. 1.9   Analytical, FEM and Ritz solutions. 
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After this example, it is possible to write the general algorithm of FEM: 
1) Presentation of Π . 
2) Determination of boundary conditions: δ . 0=Π
3) Approximation for the finite element. 
4)  - integration (analytical or numerical). eK
5) Finite element meshing.                                              By computer    
6) Building of K . 
7) Determination of the minimum of . Solution: Kd , where  is 

symmetrical and banded. 
Π FKdF 1−==    , K

8) Output of displacements. 
9) Computation of stresses. 
10) Output of stresses. 

Accuracy of FEM: ,   . exact
FEM

eapproximat ∆∆ ≤ exact
FEM

eapproximat ΠΠ ≥
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Chapter 2     Finite element of bending beam 
 
 
 
 
 

The functional Π  of bending beam loaded by the concentrated forces , bending 
moments  and distributed load  can be written in the following form 

iP

jM kq

∫∑∑∫ −−−′′=−=
Lj

j
j

i
ii

L
qwdx

dx
dw

MwPdx)w(EJWU
00

2
2
1

Π                                (1) 

Then it is necessary to describe the boundary conditions. In our case, the principal 
boundary conditions are  

dx
dww,    

and the natural boundary conditions - 

)(    )( wEJQw,wEJMw ′′′−=′′′′′−=′′  
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w
P M
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dx
dw
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1 2 x

w

w1
w2

w1 w2' '

i i+1

i i+1

i

wi
'

wi

l

w
i+1

'

dx

w
i+1

 
Fig. 2.1   Finite element of bending beam. 
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Besides, we have additional conditions - two principal boundary conditions which should 
be realised at each end of the finite element. These are conditions of joining of two 
neighbouring elements 

)i((i))i()i( ww,ww 11    ++ ′=′=  

To satisfy these four conditions, let’s choose the polynom with four coefficients as 
coordinate function 

3
3

2
210 xaxaxaa)x(w +++=  

In such view the coordinate function  does not satisfy to the boundary conditions yet. 
Therefore, let’s change it so, that coefficients a  were expressed through 
unknowns in the nodal points of element ends - , where 1 and 2 are the 
numbers of nodal points 

)x(w

3210    , a,a,a

211    , w,w,ww ′′ 2

01 aw =  (when ) and etc. 0=x

Then the system of equations is solved in relation to a . Substituting these 
expressions into coordinate function and introducing the nodal functions 

, we obtain 

3210    , a,a,a

)x(N),x(N),x(N),x(N 4321    

)x(Nw)x(Nw)x(Nw)x(Nw)x(w 42322111 ′++′+=                                             (2) 
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l
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32
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l
x

l
x)x(N +−=  

 
 
In such view the coordinate function  satisfies to the principal boundary conditions. )(xw

Then we substitute the expression (2) in (1) and obtain after integration the potential 
energy of the finite element 

)w,w,w,w(ee
2211 ′′= ΠΠ  

eeTeeeT FddKd −=
2
1eΠ  

                           1x4  4x4  4x1   1x4  4x1 
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where  is the stiffness matrix of the finite element of bending beam, d  is the vector of 
nodal unknowns of the finite element, F  is the vector of given external nodal efforts, 
when the external load is presented by the forces and moments in the nodal points. 

eK e
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Now it is possible to determine the potential energy of structure consisting from the 
separate energies of the finite elements 

∑=
N

eΠΠ  

The complete potential energy is a function of unknowns – displacements and angles of 
rotations in the nodal points. To obtain the minimum of the potential energy, as in the Ritz 
method, we take derivatives on unknowns, equate to zero and obtain the system of 
algebraic equations for determination of unknown values. Assuming that a beam consists 
from one finite element ( Π = ), the condition of minimum can be written as eΠ
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Chapter 3     Quadrilateral finite element under plane stress 
 
 
 
 
 

Since general relations of plane strain and plain stress differ only by the elastic 
constants, a solution of the plane problem in the theory of elasticity we examine on the 
base of plane stress. 
 For the calculation of plates loaded in their plane, the functional of complete 
potential energy for the plane stress is written in the following form: 

∫∫ +−++=−=
L

yxxyxyyyxx dL)vpup(d)(WU
Ω

ΩγτεσεσΠ
2
1    (1) 

where  are the normal and tangential stresses, ε  are the linear and 
angle strains, u  are the linear displacements of the points on the middle plane of plate in 
relation to axes x and y,  are the vector components of external loading in relation 
to axes x and y,  are infinitely small element of two-dimensional area and outline. 

xyyx τσσ  , ,
v, 

dΩ

xyyx ,γε   ,

yx pp  ,
dL ,

 For the plane problem in the theory of elasticity we have 
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For the isotropic material, the general relations of the plane stress can be presented as 
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or in the matrix form: 
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  ,              (5) Eεσ = Ddε =

where E is the matrix of elasticity, D is the matrix of differentiation. Now the functional of 
complete potential energy of the plate loaded in it plane can be written in the compact 
form: 

 ∫∫ −=
L

TT dLd   
2
1 dFσε

Ω
ΩΠ           (6) 

 For the building of stiffness matrix, it is necessary to set the displacement 
approximation for the finite element area and to connect it with the degrees of freedom. 
For an existence of the functional of complete potential energy, the approximation 
functions of displacements should contain terms not lower than first order. The linear 
polynomial from two variables contains three terms. To connect four nodes of the 
quadrilateral finite element with necessary quantity of constant coefficients of the 
approximation functions, the following form of these polynomials are taken 

          (7) xyayaxaa)y,x(u 4321 +++=

  xyayaxaa)y,x(v 8765 +++=

This model corresponds to the linear distribution of displacements along coordinate axes. 
 The number of linearly independent coefficients is twice more than the number of 
finite element nodes. On this reason, for each node it is possible to give two degrees of 
freedom. Thus, the finite element has eight degrees of freedom (Fig. 3.1). The vectors of 
nodal displacements and nodal reactions have the following form: 

  ,             (8) 
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Fig. 3.1   Quadrilateral finite element. 
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The stiffness matrix K with dimension 8x8 connects these vectors by the following way 

              (9) KdR =

 Let’s express the linearly independent constant coefficients of approximation 
functions by the nodal displacements. For this purpose coordinates (  for the first 
node are substituted to the expression (7) and we have 

)y,x 11

  114131211 yxayaxaau +++=

The same operation is repeated for the second and other nodes. After that we have the 
system of four linear algebraic equations in relation to the constant coefficients 
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or in the compact form: 

                    (10) Cad =

Solving the system (10), the constant coefficients  are determined )4321( ,,,iai =

                    (11) dCa 1−=

Then approximation functions can be written in the form: 
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where  are the degrees of freedom of the finite element,  are 
the nodal functions. As it is seen, only coefficients for the function u  were 
determined, since the coefficients for the function v  have the same form. In the 
detailed form, the functions can be expressed as 
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 From the principle of possible displacements we have 

                  (14) ∫=
Ω

Ωεσ rijrij d)k(

where σ  are the stresses on the finite element area from displacement d , ε  are the 

strains on the finite element area from displacement . If degrees of freedom have the 
j 1=j i

1=id
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physical meaning of displacements, ( , as an element of the stiffness matrix, is an 
effort arising along i-th degrees of freedom from j-th unit displacement under condition 
that all others (  degrees of freedom d . 
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 Thus, we can obtain now the stiffness coefficients using expression (14) and taking 
into account the plane stress state and expression (5) 

                 (15) dxdyhk jij ε=

where h is the thickness of plate,  is the strain vector (4) on the finite 
element area in the case, when the node displacement with number i is equal to unit but all 
other displacements are zero, ε  is the strain vector (4) on the finite element 
area in the case, when the node displacement with number j is equal to unit but all other 
displacements are zero. 
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 As an example, let’s express the stiffness matrix element k  presenting the 
reaction arising in the node 1 along axis x from the unit displacement of the node 2 in the 
same direction. The numbering of degrees of freedom is given in relation of their recording 
in the column (8). At the beginning we build the strain vector ε  corresponding to 

the deformation state on the finite element area from the unit displacement u , when all 
other nodal displacements are zero. In this case the vector of approximate functions is 
formed from the expression (13) taking into account u  and 

: 
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The strain vector ε  is formed in relation with the expression (4): 
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By the same way, the strain vector  is build. This vector corresponds to the 

deformation state on the finite element area from the unit displacement , when all other 
nodal displacements are zero. 
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Substituting the vectors (17) and (18) into expression (15), we have 
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   To obtain remaining elements of the stiffness matrix of quadrilateral finite element under  
   plane stress, the same procedure should be applied and we have 
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Based on expressions (5), stresses on the finite element area are determined using 
known nodes displacements of the system. The strain vector with three components is 
expressed by the vector of approximate functions by the following way: 

                   (19) EDdEεσ ==

where E is the matrix of elasticity, D is the matrix of differentiation, d is the vector of 
approximate functions consisting of two components  and . The 
approximate functions (13) are written in the matrix form: 
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After substituting expressions (3), (4) and (20) into expression (19), we have 
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where x and y are coordinates of the points on the finite element area. 
 As it is seen from the expression (21), stresses on the finite element area are the 
linear functions of coordinates. In the centre of gravity of the finite element 
( 2 2 by,ax == ) , the stress vector has the following form: 
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PART II     SOLUTION OF FINITE ELEMENT 
                    EQUILIBRIUM EQUATIONS 
 
 
 
 
 
Chapter 4     Solution of equilibrium equations in static analysis 
 
 
 
4.1 Introduction 
 

When FEM is used for a solution of static problems, we get a set of simultaneous 
linear equations, which can be stated in the form 

FKX =  
where K is the stiffness matrix of a structure, X is the displacement vector and F is the 
load vector. This equation can be expressed in the scalar form as 
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where the coefficients  and the constants  are given. The problem is to find the values 

of , if they exist. In the matrix form 
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It is necessary to note that in the finite element analysis, the order of the matrix K is very 
large. 

The methods available for solving of the systems of linear equations can be divided 
into two types: direct or iterative. Direct methods are those, which, in the absence of 
round-off and other errors, will yield the exact solution in a finite number of elementary 
arithmetic operations. In practice, because a computer works with a finite word length, 
sometimes the direct methods do not give good solutions. Indeed the errors arising from 
round-off and truncation may lead to extremely poor or even useless results. The 
fundamental method used for direct solutions is Gaussian elimination, but even within this 
class there are a variety of choices of methods, which vary in computational efficiency and 
accuracy. 

Iterative methods are those, which start with an initial approximation, and which by 
applying a suitably chosen algorithm, lead to successively better approximations. When the 
process converges, we can expect to get a good approximate solution. The accuracy and 
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the rate of convergence of iterative methods vary with the algorithm chosen. The main 
advantages of iterative methods are the simplicity and uniformity of the operations to be 
performed, which make them well suited for use on computers and their relative in 
sensitivity to the growth of round-off errors. 

Matrices associated with linear systems in the finite element analysis are classified as 
sparse and have very few nonzero elements. Fortunately, in most finite element 
applications, the matrices involved are positive definited, symmetric and banded. Hence 
solution techniques, which take advantage of the special character of such systems of 
equations, have also been developed. 
 
 
4.2 Gaussian elimination method 
 

The basic objective of this method is to transform the given system into an 
equivalent triangular system, whose solution can be more easily obtained. We shall 
consider the following system of three equations to illustrate the process 
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To eliminate the terms  from equations (2) and (3), we multiply equation (1) by -2 and -
4 and add respectively to equation (2) and equation (3) living the first equation unchanged. 
We will have then 
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To eliminate the term  from equation (3), we multiply equation (2) by 2x
5
6

−  and add to 

equation (3). We will have the triangular system 
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This triangular system can be solved now by the back substitution. From equation (3) we 
find . Substituting this value for  into equation (2) and solving for , we obtain 

. Finally, knowing  and , we can solve equation (1) for , obtaining . 
43 =x

3=
3x 2x

2x 3x 2x 1x 11 =x
 
 
4.3 Generalisation of Gauss method 
 

Let’s the given system of equations be written as 
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where new coefficients are expressed by the following way 
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The upper index (1) has been used to denote the first elimination. The general relation of 
an arbitrary coefficient after first elimination has the following form 
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To elimination with number n  corresponds the following general relation 
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Analogous formulas are obtained for a vector of load 
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The symmetry in coefficients after elimination operation maintains. Thus the matrix 
decomposition may be carried out using only coefficients situated on the main diagonal 
and above it. Therefore, it is not necessary to store the full matrix. 

Another positive feature of the Gaussian elimination, which can be used, is that 
matrix elements situated out of band do not influence on the elimination process. They 
equal to zero. Hence, it is not necessary to store them. That gives the possibility to store the 
global stiffness matrix as a rectangular array with wide equal to the wide of the matrix 
band. 

After applying the above procedure (  times, the original system of equations 
reduces to the following single equation 
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from which we can obtain 
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The values of the remaining unknowns can be found by the back substitution. 
 
Note: If zero or negative diagonal element occurs in the Gauss elimination the 

structure is not stable or, by other words, the global stiffness matrix is not 
positive definite. 

 
The Gauss elimination scheme falls under the category of direct methods. This 

category includes also Choleski method (a direct method for solving a linear system which 
makes use of the fact that any square matrix can be expressed as the product of an upper 
and lower triangular matrices), the Givens factorization (rotation matrices are used to 
reduce the global stiffness matrix into upper triangular form), the Householder 
factorization (reflection matrices are used). 
 
 
4.4 Simple vector iterations 
 

The power and inverse iteration methods are the methods not used widely now, but 
they should be examined, since help to understand more complex modern algorithms. 

 
Algorithm of the power method: 

The unit vector  is chosen. Then, for  0X ,...,,k 321=

1) To form F  1−= kk KX

2) To set the rate of 
k

k
k F

F
X =  

3) To subject X  on the convergence test. k
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The inverse iteration method is a power method applied to . It is not necessary to 
make an inverse matrix K , instead of that we change F  in the power method 
on 

1−K
−kKX 1=k

 
1’) To solve in relation of F  the following equation KF . k 1−= kk X

 
In the class of iterative, the Gauss-Seidel method is well known. The conjugate 

gradient and Newton’s methods are other iterative methods based on the principle of 
unconstrained minimisation of a function. It is to be noted that the indirect methods are less 
popular than the direct methods in solving large systems of linear equations. 
 
 
4.5 Introduction to nonlinear analyses 
 

In the linear analysis we assumed that displacements of the finite element 
assemblage are infinitesimally small and that a material is linearly elastic. In addition we 
also assumed that a nature of boundary conditions remains unchanged during application 
of loads on the finite element assemblage. Figure 4.1 gives a classification that is used very 
conveniently in practical nonlinear analysis because this classification considers separately 
material nonlinear effects and kinematic nonlinear effects. 

The basic problem in a general nonlinear analysis is to find the state of equilibrium 
of a body corresponding to the applied load. Assuming that the externally applied loads are 
described as a function of time, the equilibrium conditions of a system of finite elements 
representing the body under consideration can be expressed as 

0=− RF tt             (1) 

where the vector  stores the externally applied nodal loads and t  is the vector of 
nodal point forces that are equivalent to the element stresses. This relation must express the 
equilibrium of the system in the current deformed geometry taking due account of all 
nonlinearities. Considering the solution of the nonlinear response, we recognise that the 
equilibrium relation examined must be satisfied throughout the complete history of load 
application, i.e. the time variable may take on any value from zero to the maximum time of 
interest. 

Ft R

The basic approach in the incremental step-by-step solution is to assume that the 
solution for the discrete time  is known, and that the solution for the discrete time  
is required, where ∆  is a suitably chosen time increment. Hence, considering the previous 
relation at time  we have 

t tt ∆+
t
t∆t +

0=− ++ RF ∆tt∆tt            (2) 

Since the solution is known at time , we can write t

RRR +=+ t∆tt             (3) 

where  is the increment in nodal point forces corresponding to the increment in element 
displacements and stresses from time  to time . This vector can be approximated 
using a tangent stiffness matrix t  which corresponds to the geometric and material 
conditions at time t  

R
t tt ∆+

K
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(a)   Linear elastic (infinitesimal displacements). 
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 (b)   Materially-nonlinear-only (infinitesimal displacements, 

                                    but nonlinear stress-strain relation). 
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(c)   Large displacements and large rotations but small strains. 

                               Linear or nonlinear material behaviour. 
 

Fig. 4.1 Classification of analyses. 
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(d)    Large displacements, large rotations and large strains. 

                                  Linear or nonlinear material behaviour. 
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(e)   Change in boundary condition at displacement ∆. 

 
Fig. 4.1 (continuation) 

 
 

KXR t≅              (4) 

where  is a vector of incremental nodal point displacements. X
Substituting two last expressions (3) and (4) into previous, we obtain 

RFKX t∆ttt −= +            (5) 

and solving for , we can calculate an approximation to the displacements at time t  X t∆+

XXX +=+ t∆tt             (6) 

The exact displacements at time  are those that correspond to the applied loads 
. We calculate in equation (6) only an approximation to these displacements 

because equation (4) was used. 

tt ∆+

F∆tt +

Having evaluated an approximation to the displacements corresponding to time 
, we can now solve for an approximation to the stresses and corresponding nodal 

point forces at time t , and could then proceed to the next time increment calculations. 
However, because of the assumption in equation (4) such a solution may be subject to very 
significant errors and, depending on the time or load step sizes used, may indeed be 

tt ∆+
t∆+
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unstable. In practice, it is therefore frequently necessary to iterate until the solution of 
equation (2) is obtained to sufficient accuracy. 

A widely used iteration procedure is the modified Newton iteration, in which we 
solve for i  ,...3,2,1=

)(i∆tt∆tt)(i 11 −++− −= RF∆F           (7) 
)(i(i)t 1−= ∆F∆K            (8) 

(i))(i∆tt(i)∆tt ∆XXX += −++ 1          (9) 

with the initial conditions 

XX t)(∆tt =+ 0 ;      RR t)(∆tt =+ 0

These equations were obtained by linearizing the response of the finite element system 
about the conditions at time . In each iteration we calculate in equation (7) an out-of-
balance load vector, which yields an increment in displacements obtained in equation (8), 
and we continue the iteration until the out-of-balance load vector ∆  or the 
displacement increments ∆  are sufficiently small. 

t

(i)

)(i 1−F
X

The most frequently used iteration schemes for the solution of nonlinear finite 
element equations are some forms of Newton-Raphson iteration, when the equation (7), 
(8), (9) are a special case. In the Newton-Raphson iteration, in general the major 
computational cost per iteration lies in the calculation and factorisation of the tangent 
stiffness matrix. As an alternative to forms of Newton iteration, a class of methods known 
as matrix update methods or quasi-Newton methods has been developed for iteration on 
nonlinear systems of equations. These methods involve updating the stiffness matrix to 
provide a secant approximation to the matrix from iteration (  to i . )i 1−
 
 
4.6 Convergence criteria 
 

If a solution strategy based on iterative methods is to effective, realistic criteria 
should be used for the termination of the iteration. At the end of each iteration, the solution 
obtained should be checked to see a convergence. If the convergence tolerances are too 
loose, inaccurate results are obtained, and if the tolerances are too tight, much 
computational effort is spent to obtain needless accuracy. 

Since we are seeking the displacement corresponding to time t , it is natural to 
require that the displacements at the end of each iteration be within a certain tolerance of 
the true displacement solution. Hence, a realistic convergence criterion is 

t∆+

D
tt
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where  is a displacement convergence tolerance, De
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=
X  is the Eucledean 

norm. The vector t  is not known and must be approximated. X∆t+
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A second convergence criterion is obtained by measuring the out-of-balance load 
vector. For example, we may require that the norm of the out-of-balance load vector be 
within a preset tolerance  of the original load increment Fe

Fttt

(i)tttt

e≤
−

−

+

++

2

2

RF

RF
 

In the case, when both the displacements and the forces are near their equilibrium 
values, a third convergence criterion may be useful, in which the iteration (i.e. the amount 
of work done by the out-of-balance loads on the displacement increments) is compared to 
the initial internal energy increment. Convergence is assumed to be reached when, with  
a preset energy tolerance, 

Ee

Ettt)T(

)(itttt(i)T
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)(
)(

1

1
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Chapter 5     Solution of eigenproblems 
 
 
 
5.1 Introduction 
 

The forced vibration equation after the finite element discretization of structure can 
be expressed as follows 

FKXXM =+&&             (1) 

where  and  are the mass and stiffness matrices of structure;  is the external load 
vector;  and  are the displacement and acceleration vectors. In the free vibration 
analysis, the external load vector is zero and the displacements are harmonic as 

M
X

K
X&&

F

tie ωXX =              (2) 

After substitution of Equation (2) into Equation (1), we obtain 

[ ] 0 2 =− XMK ω    or   XMXK λ=         (3) 

where X  represents the amplitudes of the displacements  called the mode shape or 
eigenvector,  denotes the natural frequency of vibration and ω =  is called 
eigenvalue. Equation (3) is the generalised eigenvalue problem  It has a nonzero solution 
for 

X
ω λ2

.
X , when the determinant of the following matrix [ ]M2K ω−  is zero, i.e. 

02 =− MK ω             (4) 

The structure with  degrees of freedom has  natural frequencies. It was assumed 
that the rigid body degrees of freedom were eliminated in Equation (1). If rigid body 
degrees of freedom are not eliminated in deriving the matrices  and M , some of the 
natural frequencies ω  would be zero. In such case, for a general three-dimensional 
structure, there will be six rigid body degrees of freedom and hence six zero frequencies. 

n n

K

In most of the numerical methods used for the solution of Equation (3), the 
generalised eigenvalue problem is first converted into the form of a standard eigenvalue 
problem, which can be stated as 

XXH λ=    or   [ ] 0=− XIH λ          (5) 

Multiplying Equation (3) by , we obtain Equation (5), where 1−M

KMH 1−=             (6) 

However, in this form the matrix  is in general nonsymmetric, although  and K  are 
both symmetric. Since a symmetric matrix is desirable from the points of view of storage 

H M
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and computer time, we adopt the following procedure to derive a standard eigenvalue 
problem with symmetric H  matrix. 

M

XU

X =

Assuming that  is symmetric and positive definite, we use Choleski 
decomposition and express M  as , where  is the upper triangular matrix. By 
substitution of M  into Equation (3), we obtain 

UUM T= U

XUUXK Tλ=  

i.e.   XKU λ=−1T  

i.e.   XUUKUU λ−− 11T           (7) 

Defining a new vector Y  as XUY = , Equation (7) can be written as a standard eigenvalue 
problem as 

[ ] 0=− YIH λ  

where the matrix  is now symmetric and is given by H
11 −−= KUUH T  

Then we apply the inverse transformation to obtain the desired eigenvectors 

ii YUX 1−=  

corresponding to the eigenvalues . iλ
Two general types of methods, namely, transformation methods and iterative 

methods, are available for solving eigenvalue problems. The transformation methods such 
as Jacobi, Givens and Householder schemes are preferable, when all the eigenvalues and 
eigenvectors are required and the dimension of the eigenvalue problem is small. The 
iterative methods such as the power method, subspace iteration and Lanczos methods are 
preferable, when few eigenvalues and eigenvectors are required only and the eigenvalue 
problem has a large dimension. 
 
 
5.2 Transformation methods 
 

Transformation methods employ the basic properties of eigenvectors in the matrix 
, X

ΛKXX =T             (8) 

IMXX =T             (9) 

Since the matrix , of order , which diagonalizes  and  in the way given in 
Equations (8) and (9) is unique, we can try to construct it by iteration. The basic scheme is 
to reduce  and  into diagonal form using successive pre- and post-multiplication by 
matrices  and , respectively, where k 1,2,... Specifically, if we define  
and , we form 

X

M
P

nn × K M

K
T
kP
M

k = KK =1
M1 =
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where the matrices P  are selected to bring  and  closer to diagonal form. Then 
 and  as k  and  is examined as the last iteration, 

. In practice, it is not necessary that M  converges to  and  to 
diagonal form. Namely, if K  and  as k  then 
with  indicating the last iteration 

k
Mk

kK

)r

kM

1+k

kM +1

ΛK →+1k
...PPPX 21=

l

I→+1

k

∞→

(diag K

l

l I 1+kK
∞→→+1 )(diag rM→











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+

+

)l(
r

)l(
rdiag 1

1

M

KΛ  














=

+ )l(
r

l diag...
121

1

M
PPPX  

The basic idea described above is used in Jacobi and Householder-QR methods 
applied effectively in the finite element analysis. 
 
 
5.3 Jacobi method 
 

The basic Jacobi method has been developed over a century ago for the solution of 
standard eigenproblems. A major advantage of the procedure is its simplicity and stability. 

Considering the standard eigenproblem XXK λ= , the k iteration step defined in 
Equation (10) reduces to 

kk
T
kk PKPK =+1                  (12) 

where  is an orthogonal matrix, i.e. Equation (11) gives kP

IPP =k
T
k  

In Jacobi solution the matrix  is a rotation matrix, which is selected in such way that an 
off-diagonal element in K  becomes zero. If element  is to be reduced to zero, the 
corresponding orthogonal matrix P  is 

kP

k ( ji, )
k
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where  is selected from the condition that element  in K  be zero. Denoting 

element ( n  by , we use 

θ ( ji, )
)

1+k

ji,  i kK )k(
ijk

)k(
jj

)k(
ii

)k(
ij

kk

k
tan

−
=

2
2θ  for    )k(

jj
)k(

ii kk ≠

4
π

θ =  for    )k(
jj

)k(
ii kk =

Since  is symmetric for all k , the upper (or lower) triangular part of the matrix, 
including its diagonal elements, is used. 

kK

It is necessary to note that although the transformation in Equation (12) reduces an 
off-diagonal element in K  to zero, this element will again become nonzero during the 
transformations that follow. Therefore for the design of an actual algorithm, we have to 
decide which element to reduce to zero. One choice is to always zero the largest off-
diagonal element in . However, the search for the largest element is time consuming 
and it may be preferable to simply carry out the Jacobi transformations systematically, 
row-by-row or column-by-column, which is known as the cyclic Jacobi procedure. The 
disadvantage of this procedure is that the element may already be nearly zero and a 
rotation is still applied. A procedure that has been used very effectively is the threshold 
Jacobi method, in which the off-diagonal elements are tested consequently, namely row-
by-row (or column-by-column), and a rotation is only applied if the element is larger than 
the threshold. 

k

kK

 
 
5.4 Vector iteration methods 
 

In the vector iteration methods the basic relation is 

XMXK λ=                   (13) 
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If assume a vector for X , say , and assume a value for , say λ , we can evaluate 
then the right-hand side of Equation (13), i.e. we may calculate 

1X λ 1=

11 1 MXR )(=  

Since  is an arbitrarily assumed vector, we do not have, in general, that . 
Instead, we have the following equation 

1X 11 RKX =

12 RKX = ,    12 XX ≠

We may assume that  may be a better approximation to an eigenvector than was . 
By repeating the cycle we obtain an increasingly better approximation to an eigenvector. 

2X 1X

The procedure described above is the basic of inverse iteration. We will see that 
other vector iteration techniques work in a similar way. Specifically, in forward iteration, 
in the first step we evaluate R  and then obtain the improved approximation  to 
the eigenvector solving MX . 

11 KX=

12 R=
2X

 
 
5.5 Subspace iteration method 
 

This method is very effective in finding the first few eigenvalues and the 
corresponding eigenvectors of large eigenvalue problems. The various steps of this method 
are given below briefly. 
 
Algorithm: 
 

1) Start with q  initial iteration vectors  > , where  is 
the number of eigenvalues to be calculated. Bathe and Wilson suggested 
a value of  for good convergence. Define the initial 
modal matrix  as 

,,...,, qXXX 21 q p p

)p,pmin( 82 +=

0X
q

][ q...XXXX 210 =  
and set the iteration number as k . 0=

 
2) Use the following subspace iteration procedure to generate an improve 

modal matrix : 1+kX

a) Find X  from the relation 1+k
~

  kk
~ MXXK =+1

b) Compute 
  111 +++ = k

T
kk

~~ XKXK

  111 +++ = k
T
kk

~~ XMXM
c) Solve for the eigenvalues and eigenvectors of the reduced system 
  11111 +++++ = kkkkk ΛQMQK
 and obtain +kΛ  and Q  1 1+k
d) Find an improved approximation to the eigenvectors of the original 

system as 
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111 +++ = kkk
~ QXX  

Note: 
(1) It is assumed that the iteration vectors converging to the 

exact eigenvectors  are stored as the 
columns of the matrix . 

,..., exactexact
21 XX

1+kX
(2) It is assumed that the vectors in  are not orthogonal to 

one of the required eigenvectors. 
0X

 
(3) If λ  and λ  denote the approximations to the i eigenvalue in the 

iterations  and  respectively, we assume convergence of the 
process whenever the following criteria is satisfied: 

)k(
i

)k(
i

1+

1−k k

ε
λ

λλ
≤

−
+

+

)k(
i

)k(
i

)k(
i

1

1
,   i  p,...,,21=

where ε . 610−≅
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Chapter 6     Solution of equilibrium equations in dynamic analysis 
 
 
 
6.1 Introduction 
 

The dynamic equation of motion of a structure can be written as 

            (1) FKXXCXM =++ &&&

where  and K  are the mass, damping and stiffness matrices of structure, F  is the 
external load vector,  and  are the displacement, velocity and acceleration vectors 
of a finite element assemblage. It should be noted that Equation (1) is derived from 
considerations of static at time t, i.e. Equation (1) may be written as 

CM  ,
XX & , X&&

(t)(t)(t)(t) EDI FFFF =++           (2) 

where  are the inertia forces, ; are the damping forces, F ; 
 are the elastic forces, , all of them are time-dependent. 

(t)IF XMF &&=(t)I
KX=

(t)DF XC &=(t)D
(t)EF F (t)E

Mathematically, Equation (1) represents a system of linear differential equations of 
second order and, in principle, the solution of the equations can be obtained by standard 
procedures for the solution of differential equations with constant coefficients. However, 
these procedures can be very expensive if the order of the matrices is large. Therefore few 
effective methods have been elaborated to apply them in practical finite element analysis. 
These methods are divided into direct integration and mode superposition. Although these 
two techniques may at first sight appear to be quite different, in fact, they are closely 
related, and the choice for one method or the other is determined only by their numerical 
effectiveness. We will consider only solution of the linear equilibrium equations (Equation 
(1)). 
 
 
6.2 Direct integration methods 
 

In direct integration the equations in (1) are integrated using a numerical step-by-step 
procedure, the term “direct” meaning that prior to the numerical integration, no 
transformation of the equations into a different form is carried out. In essence, direct 
numerical integration is based on two ideas. First, instead of trying to satisfy Equations (1) 
at any time , it is assumed to satisfy Equations (1) only at discrete time intervals  apart. 
Therefore it appears that all solution techniques employed in static analysis can probably 
also be used effectively in direct integration. The second idea on which a direct integration 
method is based is that a variation of displacements, velocities and accelerations within 
each time interval ∆  is assumed. This assumption determines the accuracy, stability and 
cost of the solution procedure. 

t t∆

t
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In the solution the time span under consideration  is subdivided into n  equal time 

intervals  (i.e. 

T

t∆
n
Tt =

,t,∆ 20

∆ ) and the integration scheme employed establishes an 

approximate solution at times 0 . Since an algorithm calculates 
the solution at the previous times considered, we derive the algorithms by assuming that 
the solutions at times  are known and that the solution at time t  is 
required next. Let’s have a look now a more effective and widely used in the general 
purpose finite element programs (including ANSYS), the Newmark method. 

T,...,+ tt,t,...,t,t,t, ∆∆∆∆ 32

t,...,t,t ∆3∆ t∆+

 
 
6.3 The Newmark method 
 

The Newmark integration scheme can be examined as an extension of the linear 
acceleration method. The following assumptions are used 

( )[ ]∆tδδ ∆tttt∆tt XXXX &&&&&& ++ +−+=   1         (3) 

2  
2
1 ∆tαα∆t ∆ttttt∆tt









+






 −++= ++ XXXXX &&&&&       (4) 

where α  and δ  are parameters that can be determined to obtain integration accuracy and 
stability. 
 

The linear acceleration method: a linear variation of acceleration from time t  to time 
 is assumed. tt ∆+

 
When 21=δ  and 61=α , relations (3) and (4) correspond to the linear acceleration 
method. Newmark originally proposed, as an unconditionally stable scheme, the constant-
average-acceleration method (also called trapezoidal rule), in which case 21=δ  and 

41=α . 
In addition to (3) and (4), for solution of the displacements, velocities and 

accelerations at time , the equilibrium Equations (1) at time t  are also 
considered 

tt ∆+ t∆+

        (5) FXKXCXM ∆tt∆tt∆tt∆tt ++++ =++    &&&

 
 

X&&t X&&tt ∆+( )XX &&&& ttt ∆++
2
1

t tt ∆+
 

Fig. 6.1   Newmark’s constant-average-acceleration scheme. 
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Solving from (4) for  in terms of  and then substituting for  into (3), 
we obtain equations for  and , each in terms of the unknown displacements 

 only. These two relations for  and t  are substituted into (5) to solve 
for t , after which, using (3) and (4),  and t  can also be calculated. 

X&&∆tt +

∆tt +
X∆tt +

X&t

X&∆t

X&&∆tt +

X&&∆tt +

X&& ∆t +

t +X∆tt +

∆+
X&&∆t+

∆+Xt X&t

 
Step-by-step solution using Newmark integration method: 
 

A. Initial calculations: 
1. Form stiffness matrix K , mass matrix  and damping matrix . M C
2. Initialise X,0 and 0 . X&0 X&&
3. Select time step size ∆ , parameters α  and δ , and calculate 

integration constants: 
t

500.≥δ    ;   α +  250250 ).(. δ≥

20
1
t

a
∆α

=    ;   
t

a
∆α
δ

=1    ;   
t

a
∆α
1

2 =    ;   1
2
1

3 −=
α

a    ; 

14 −=
α
δa    ;   






 −= 2

225
δ∆ta    ;      ;    ( δ∆ −= 16 ta ) ta ∆δ=7

4. Form effective stiffness matrix K : CMKK 10 aa ++= . 

5. Triangularize K : TLDLK =  
B. For each time step: 

1. Calculate effective loads at time t : t∆+

)aa(a)aa(a tttttt∆tt∆tt XXXCXXXMFF &&&&&& 541320 ++++++= ++

tt ∆+2. Solve for displacements at time : 
FXLDK ∆tt∆ttT ++ =  

3. Calculate accelerations and velocities at time : tt ∆+

( ) XXXXX &&&&& ttt∆tt∆tt aaa   320 −−−= ++  

XXXX &&&&&& ∆tttt∆tt aa ++ ++=   76  
 
 
6.4 Mode superposition 
 

The numbers of operations required in the direct integration are directly proportional 
to the number of time steps used in the analysis. Therefore, in general, the use of direct 
integration can be expected to be effective, when the response for a relatively short 
duration is required. However, if the integration must be carried out for many time steps, it 
may be more effective to first transform the equilibrium equations (Equation (1)) into a 
form in which the step-by-step solution is less costly. In particular, since the number of 
operations required is directly proportional to the half-bandwidth m  of the stiffness 
matrix, a reduction in  would decrease proportionally the cost of the step-by-step 
solution. 

k

km
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6.5 Change of basis to modal generalised displacements 
 

We propose to transform the equilibrium equations into a more effective form for 
direct integration by using the following transformation on the finite element nodal point 
displacements  X

             (6) (t)(t) PUX =

where  is a square matrix and  is a time-dependent vector of order . The 
transformation matrix  is still unknown and will have to be determined. The components 
of  are refered to as generalised displacements. Substituting (6) into (1) and 
premultiplying by , we obtain 

P (t)U n
P

U
TP

(t)(t)(t)(t) FUKUCUM =++ &&&          (7) 
 
   FPFKP,PKCP,PCMP,PM TTTT ====                (8) 
 

The objective of the transformation is to obtain new system stiffness, mass and 
damping matrices, M, K  and C , which have a smaller bandwidth than the original system 
matrices, and the transformation matrix P  should be selected accordingly. In theory, there 
can be many different transformation matrices , which would reduce the bandwidth of 
the system matrices. However, in practice, an effective transformation matrix is established 
using the displacement solutions of the free vibration equilibrium equations with damping 
neglected, 

P

0=+ KXXM &&             (9) 

By substitution tie ωΦX = , Equation (9) becomes 

ΦMΦK 2ω=                   (10) 

where Φ  is an eigenvector and ω  is an eigenvalue, and Equation (10) is called the 
generalised eigenvalue problem with unknowns 

2

Φ  and ω . The eigenproblem (10) yealds 
the  eigensolutions 

2

n ( )1
2
1 Φ,ω , ( )2Φ2

2 ,ω , …, ( )nn ,Φ2ω , where the eigenvectors are M-
orthonormalized, i.e. 





≠=
==

ji,
ji,

i
T
i    0

   1
ΦMΦ                  (11) 

22
2

2
10 n... ωωω ≤≤≤≤                 (12) 

The vector iΦ  is called the i –mode shape vector and ω  is the corresponding frequency 
of vibration. 

i

Defining a matrix , whose columns are the eigenvectors Φ iΦ  and a diagonal matrix 

, which stores the eigenvalues ω  on its diagonal, i.e. 2Ω 2
i
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[ ]n,...,, ΦΦΦΦ 21= ,                 (13) 
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we can write the n  solutions to (10) as 
2ΩMΦKΦ =                   (14) 

Since the eigenvectors are M–orthogonal, we have 
2ΩKΦΦ =T ,                    (15) IMΦΦ =T

It is now apparent that the matrix Φ  would be a suitable transformation matrix P  in 
(6). Using 

                   (16) (t)(t) ΦUX =

we obtain equilibrium equations that correspond to the modal generalised displacements 

(t)(t)(t)(t) TT FΦUΩUCΦΦU 2 =++ &&&               (17) 

The initial conditions on  are obtained using (16) and the M–orthonormality of , i.e. 
at time 0 we have 

(t)U Φ

 ,                   (18) XMΦU 00   T= XMΦU && 00   T=

The equations in (17) show that if a damping matrix is not included in the analysis, 
the finite element equilibrium equations are decoupled, when using in the transformation 
matrix  the free vibration mode shapes of the finite element system. Since the derivation 
of the damping matrix can in many cases not be carried out explicitly, but the damping 
effects can only be included approximately, it is reasonable to use a damping matrix that 
includes all required effects, but at the same time allows an effective solution of the 
equilibrium equations. 

P

 
 
6.6 Analysis with damping neglected 
 

If velocity-dependent damping effects are not included in the analysis, each equation 
presents the equilibrium equation of a single degree of freedom system with unit mass and 
stiffness . In summary, the response analysis by mode superposition requires first, the 
solution of the eigenvalues and eigenvectors of the problem, then the solution of the 
decoupled equilibrium equations and, finally, the superposition of the response in each 
eigenvector. The choice of whether to use direct integration or mode superposition will be 
decided by considerations of effectiveness only. The essence of a mode superposition 
solution of a dynamic response is that frequently only a small fraction of the total number 
of decoupled equations need be considered, in order to obtain a good approximate solution 
to the actual response of the system. However, the finite element mesh should be chosen 
such that all important exact frequencies and vibration mode shapes are well approximated. 
In this case, the mode superposition procedure can be much more effective than direct 
integration. 

2
iω
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For earthquake loading, in some cases only the 10 lowest modes need be considered, 
although the order of the system  may be larger than 1000. On the other hand, for blast or 
shock loading, many more modes need generally be included, and number of eigenmodes 
required  may be as large as 2 n /3. Finally, in vibration excitation analysis, only a few 
intermediate frequencies may be excited, such as all frequencies between the lower and 
upper frequency limits ω  and ω , respectively. Considering the problem of selecting the 
number of modes to be included in the mode superposition analysis, it should always be 
kept in mind that an approximate solution to the dynamic equilibrium equations is sought. 

n

u

p

l

In summary, assuming that the decoupled equations have been solved accurately, the 
errors in a mode superposition analysis using  are due to the fact that not enough 
modes have been used, whereas the errors in a direct integration analysis arise because too 
large a time step is employed. 

np <

 
 
6.7 Analysis with damping included 
 

Considering the analysis of system in which damping effects can not be neglected, 
we still would like to deal with decoupled equilibrium equations, merely to be able to use 
essentially the same computational procedure whether damping effects are included or 
neglected. In general, the damping matrix C  can not be constructed from element damping 
matrices, such as the mass and stiffness matrices of the element assemblage, and its 
purpose is to approximate the overall energy dissipation during the system response. The 
mode superposition analysis is particularly effective if it can be assumed that damping is 
proportional, in which case 

 ijiij
T
i δξω2=ΦCΦ                  (19) 

where ξ  is a modal damping parameter and δ  is the Kronecker delta (δ  for , 

 for ). Therefore, using Equation (19), it is assumed that the eigenvectors 
i

0
ij 1=ij ji =

=ijδ ji ≠

n,...,,2i,i    Φ 1=  are also C–orthogonal and the equations in (17) reduce to n equations of 
the form 

               (20) )t(f)t(u)t(u)t(u iiiiiii =++ 22 ωξω &&&

where  and the initial conditions on u  are defined as )t(fi )t(i

)t()t(f T
ii FΦ= ,                    (21) ni ,...,2,1=

XMΦ

XMΦ

&& 0
0

0
0

  

  
T
iti

T
iti

u

u

=

=

=

=                  (22) 

We note that Equation (20) is the equilibrium equation governing motion of the single 
degree of freedom system. 

In considering the implications of using (19) to take account of damping effects, the 
following observations are made. Firstly, the assumption in (19) means that the total 
damping in the structure is the sum of individual damping in each mode. The damping in 
one mode could be observed, for example, by improving initial conditions corresponding 

 50



to that mode only (i.e. iΦX =

C

0  for mode i ) and measuring the amplitude decay during 
the free damped vibration. A second observation is that in the numerical solution we do not 
calculate the damping matrix , but only the stiffness and mass matrices K  and . M

However, assume that it would be numerically more effective to use the direct step-
by-step integration and that the realistic damping ratios ξ  are known. In that 
case, it is necessary to evaluate the matrix  explicitly, which when substituted into (19) 
yields the established damping ratios ξ . If , Rayleigh damping can be assumed, 
which is of the form 

p,...,,i,i 21   =
C

i 2=p

KMC βα +=                   (23) 

where  and  are constants to be determined from two given damping ratios that 
correspond to two unequal frequencies of vibration by the following way 

α β

iii

iii
T
i )(

ξωβωα

ξωβα

2

2
2 =+

=+ ΦKMΦ
                (24) 

In actual analysis it may well be that the damping ratios are known for many more 
than two frequencies. In that case two average values, say 1ξ  and 2ξ , are used to evaluate 

 and . α β
If more than only two damping ratios are used to establish , a more complicated 

damping matrix may be suggested. Assume that the  damping ratios ξ  are 
given to define . Then a damping matrix that satisfies the relation in (19) is obtained 
using the Caughey series, 

C
p p,...,,i,i 21   =

C

[ ]∑
−

=

−=
1

0

1
p

k

k
ka KMMC                 (25) 

where the coefficients a  are calculated from the  simultaneous equations p,...,,k,k 21   = p









++++= −

−
32

1
3

21
0

2
1 p

ipii
i

i a...aa
a

ωωω
ω

ξ              (26) 

We should note that with , Equation (25) reduces to Rayleigh damping, as 
presented in (23). An important observation is that if , the damping matrix C  in (25) 
is, in general, a full matrix that considerably increases the cost of analysis. Therefore 
Rayleigh damping is assumed in most practical analyses using direct integration. A 
disadvantage of Reyleigh damping is that the higher modes are considerably more damped 
than the lower modes, for which the Rayleigh constants have been selected. 

2=p
2>p

In the case of nonproportional damping (analysis of structures with widely varying 
material properties), it may be resonable to assign in the construction of the damping 
matrix different Rayleigh coefficient α  and  to different parts of the structure, which 
results into a damping matrix that does not satisfy the relation in (19). Another case of 
nonproportional damping is encountered, when concentrated dampers corresponding to 
specific degrees of freedom (e.g. at the support points of a structure) are specified. 

β

The solution of the finite element system equilibrium equatoins with nonproportional 
damping can be obtained using the direct integration algorithms without modifications, 
because the property of the damping matrix did not enter the derivation of the solution 
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procedures. In the mode superposition method for the case of nonproportional damping, 
the equilibrium equations in the basis of mode shape vectors are no longer decoupled. An 
exact mathematical formulation may be presented in an alternative analysis procedure, 
where the decoupling of the finite element equilibrium equations is achieved by solving a 
quadratic eigenproblem, in which case complex frequencies and vibration mode shapes are 
calculated. 
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PART III     EMPLOYMENT OF THE FINITE ELEMENT 
                      METHOD 
 
 
 
 
 
Chapter 7     Some modelling considerations 
 
 
 
7.1 Introduction 
 

An establishment of appropriate finite element model for an actual practical problem 
depends to a large degree on the following factors: understanding of the physical problem 
including a qualitative knowledge of the structural response to be predicted, knowledge of 
the basic principles of mechanics and good understanding of the finite element procedures 
available for analysis. 

Discretization of the domain into finite elements is the first step in the finite element 
method. This is equivalent to replacing the domain having an infinite number of degrees of 
freedom by a system having finite number of degrees of freedom. The shape, size, number 
and configuration of elements have to be chosen carefully so that the original body or 
domain is simulated as closely as possible without increasing the computational effort 
needed for the solution. The various considerations taken in the discretization process are: 
• type of elements 
• size of elements 
• location of nodes 
• number of elements 
• simplifications afforded by the physical configuration of the body 
• finite representation of infinite bodies 
• node numbering scheme 
• automatic node generation 

After meshing of the body it is necessary to add the material properties, external 
loads, and apply the boundary conditions. Before start of the problem, only parameters of 
the calculation regime should be added to the input file. 
 
 
7.2 Type of elements 
 

Often the type of elements to be used will be evident from the physical problem itself 
and geometry of the body. Let’s consider briefly various types of finite elements, which are 
subject to certain static and kinematic assumptions. 
 
• Truss and beam elements 

Truss and beam elements are very widely used in structural engineering (Fig. 7.1, 7.2) 
to model for example building frames and bridges. 
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Fig. 7.1   Uniaxial stress condition: frame under concentrated loads. 

 
 

A

A M P

y

x

FE

Across section A-A:
0   0   0 ≠≠≠ xyyx ,, τσσ

 
Fig. 7.2   Beam under concentrated load and moment. 
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Fig. 7.3   Plane stress conditions: membrane and beam under in-plane actions. 
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                   Fig. 7.4   Plane strain conditions: long dam subjected to water pressure 
                                  and long retaining wall subjected to soil pressure. 
 
 
• Plane stress and plane strain elements 

Plane stress elements are employed to model membranes, the in-plane action of beams 
and plates and so on (Fig. 7.3). In each of these cases a two-dimensional stress situation 
exists in x-y plane with the stresses σ  equal to zero. yzxzz ,, ττ   

Plane strain elements are used to represent a slice (of unit thickness) of a structure in 
which the strain components ε  are zero. This situation arises in the analysis of 
long dam, retaining wall and so on (Fig. 7.4). 

yzxzz ,, γγ   

 
• Plate and shell elements 

The basic proposition in plate and shell analyses is that the structure (Fig. 7.5) is thin in 
one dimension and therefore the following assumptions can be made: 
1) The stress through the thickness (  of the plate/shell is zero. )z 0=σ
2) Material particles that are originally on a straight line perpendicular to the mid-surface 

of the plate/shell remain on a straight line during deformations. In the Kirchhoff 
theory, shear deformations are neglected and the straight line remains perpendicular to 
the mid-surface during deformations. In the Mindlin theory, shear deformations are 
included and therefore the line originally normal to the mid-surface does in general not 
remain perpendicular to the mid-surface during the deformations. 

 
In certain problems, the given body can not be represented as an assemblage of only 

one type of elements. In such cases, we may have to use two or more types of elements for 
idealisation. Examples of this would be the analysis of an aircraft wing or the analysis of a 
car body. 
 
 
7.3 Size of elements 
 
 Size of elements influences the convergence of the solution directly and hence it has 
to be chosen with care. If the size of elements is small, the final solution is expected to be 
more accurate. However, we have to remember that the use of elements of smaller size will 
also mean more computational time. Sometimes, we may have to use elements of different 
sizes in the same body. For example, in the case of stress analysis of a plate with a hole, 
elements of different sizes have to be used. Size of elements has to be very  small  near  the  
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Fig. 7.5   Plate and shell structures. 

 
 
hole (where stress concentration is expected) compared to far away places. In general, 
whenever steep gradients of the field variable are expected, we have to use a finer mesh in 
those regions. 

Another characteristic related to the size of elements, which affects the finite element 
solution, is the aspect ratio of elements. The aspect ratio describes the shape of element in 
the assemblage of elements. For two-dimensional elements, the aspect ratio is taken as the 
ratio of the largest dimension of the element to the smallest dimension. Elements with an 
aspect ratio of nearly unity generally yield best results. 
 
 
7.4 Location of nodes 
 

If the body has no abrupt changes in geometry, material properties and external 
conditions (like load, temperature, etc.), the body can be divided into equal subdivisions 
and hence the spacing of nodes can be uniform. On the other hand, if there are any 
discontinuities in the problem, nodes have to be introduced obviously at these 
discontinuities, as shown in Figure 7.5, where (a) and (b) - discontinuity in loading, (c) - 
discontinuity in geometry, (d) - discontinuity in material properties, (e) - discontinuity in 
material. 
 
 
7.5 Number of elements 
 

The number of elements to be chosen for idealisation is related to the accuracy 
desired, size of elements and number of degrees of freedom involved (dimension of 
problem). An increase in the number of elements generally means more accurate results 
(Fig. 7.7). However, the use of large number of elements involves large number of degrees 
of freedom and we may not be able to store the resulting matrices in the available computer 
memory. 
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Fig. 7.7   Convergence in results. 

 57



)(ux

0=v 0=v

0=u

)(vy

 
Fig. 7.8   A plate with a hole with symmetric geometry and loading. 

 
 
7.6 Simplifications afforded by the physical configuration of the body 
 

If configuration of the body, as well as the external conditions, is symmetric, we may 
consider only half or quarter of the body for finite element idealisation (Fig. 7.8). The 
symmetry conditions, however, have to be incorporated in the solution procedure. 
 
 
7.7 Finite representation of infinite bodies 
 

In some cases, like in the case of analysis of foundations and semi-infinite bodies, 
the boundaries are not clearly defined. Fortunately it is not necessary to idealise the infinite 
body. So, in the case of analysis of foundation, the effect of loading decreases gradually 
with increasing distance from the point of loading and we can consider only the continuum 
in which the loading is expected to have significant effect. In this case, the boundary 
conditions for this finite body have to be incorporated in the solution. 

In the present example, the semi-infinite soil has been simulated considering only a 
finite portion of the soil (Fig. 7.9). In some applications, the determination of size of the 
finite domain may pose a problem. In such cases, one can use infinite elements for the 
modelling. 
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Fig. 7.9   A foundation under concentrated load. 
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7.8 Node numbering scheme 
 

Since most of the matrices involved in the finite element analysis are symmetric and 
banded, the required computer storage can be considerably reduced storing only the 
elements involved in the half bandwidth instead of storing the whole matrix. The 
bandwidth of the assemblage matrix depends on the node numbering scheme and the 
number of degrees of freedom considered per node. If we can minimise the bandwidth, the 
storage requirements, as well as solution time, can also be minimised. Since the number of 
degrees of freedom per node is generally fixed for any given type of problem, the 
bandwidth can be minimised using a proper node numbering scheme. As an example, 
consider a three-bay frame with rigid joints, 20 storeys high (Fig. 7.10). A shorter 
bandwidth (B) can be obtained numbering the nodes across the shortest dimension of the 
body. 
 
 
7.9 Automatic mesh generation 
 

For large systems, the procedure of node numbering becomes nearly impossible. 
Hence automatic mesh generation algorithms capable of discretizing any geometry into an 
efficient finite element mesh without user intervention are applied. Most of the automatic 
bandwidth renumbering schemes permits an arbitrary numbering scheme initially. Then the 
nodes are renumbered through an algorithm to reduce the bandwidth of the system 
equations. After the system equations are solved, the node numbers are often converted 
back into the original ones. 
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Fig. 7.10   Node numbering scheme. 
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Chapter 8     Finite element program packages 
 
 
 
8.1 Introduction 
 

The general applicability of the finite element method makes it a powerful and 
universal tool for a wide range of problems. Hence a number of computer program 
packages have been developed for the solution of a variety of structural and solid 
mechanics problems. Among more widely used packages are ANSYS, NASTRAN, 
ADINA, LS-DYNA, MARC, SAP, COSMOS, ABAQUS, NISA. Each finite element 
program package consists from three parts: 
• programs for preparation and control of the initial data, 
• programs for solution of the finite element problem, 
• programs for processing of the results. 
Let’s consider now some general features of a more widely applied finite element program 
- ANSYS. 

The ANSYS program is a computer program for the finite element analysis and 
design. The ANSYS program is a general-purpose program, meaning that you can use it 
for almost any type of finite element analysis in virtually and industry - automobiles, 
aerospace, railways, machinery, electronics, sporting goods, power generation, power 
transmission and biomechanics, to mention just a few. “General purpose” also refers to the 
fact that the program can be used in all disciplines of engineering - structural, mechanical, 
electrical, electromagnetic, electronic, thermal, fluid and biomedical. The ANSYS program 
is also used as an educational tool at universities. ANSYS software is available on many 
types of computers including PC and workstations. Several operating systems are 
supported. 

The procedure for a typical ANSYS analysis can be divided into three distinct steps: 
• build the model, 
• apply loads and obtain the solution, 
• review the results. 
 
 
8.2 Build the model 
 

“Build the model” is probably the most time-consuming portion of the analysis. In 
this step, you specify the job-name and analysis title and then use pre-processor (PREP 7) 
to define the element types, element real constants, material properties, and the model 
geometry. 

The ANSYS element library contains over 80 different element types. Each element 
type is identified by unique number and prefix that identifies the element category: 
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BEAM4, SOLID96, PIPE16, etc. The following categories are available: BEAM, 
COMBINation, CONTACT, FLUID, HYPERelastic, INFINite, LINK, MASS, MATRIX, 
PIPE, PLANE, SHELL, SOLID, SOURCe, SURFace, USER, and VISCOelastic (or 
viscoplastic). 

The element type determines, among other things, the degree-of-freedom set (which 
implies the discipline - structural, thermal, magnetic, electric, fluid, or coupled-field), the 
characteristic shape of the element (line, quadrilateral, brick, etc.), and whether the element 
lies in 2-D space or 3-D space. BEAM4, for example, has 6 structural degrees-of-freedom 
(UX, UY, UZ, ROTX, ROTY, ROTZ), is a line element and can be modelled in 3-D space. 

Element real constants are properties that are specific to a given element type, such 
as cross-sectional properties of a beam element. For example, real constants for BEAM3, 
the 2-D beam element, are area (AREA), moment of inertia (IZZ), height (HEIGHT), shear 
deflection constant (SHEARZ), initial strain (ISTRN), and added mass per unit length 
(ADDMAS). 

Material properties are required for most element types. Depending on the 
application, material properties may be linear, nonlinear, and/or anisotropic. 

The main objective of the step “Creating the model geometry” is to generate a finite 
element model - nodes and elements - that adequately describes the model geometry. There 
are two methods to create the finite element model: solid modelling and direct generation. 
With “solid modelling”, you describe the geometric boundaries of your model and then 
instruct the ANSYS program to automatically mesh the geometry with nodes and elements. 
You can control the size and shape of the elements that the program creates. With “direct 
generation”, you “manually” define the location of each node and the connectivity of each 
element. Several convenience operations, such as copying patterns of existing nodes and 
elements, symmetry reflection, etc. are available. 
 
 
8.3 Apply loads and obtain the solution 
 

In this step, you use SOLUTION menu to define the analysis type and analysis 
options, apply loads, specify load step options, and initiate the finite element solution. 

The analysis type is chosen based on the loading conditions and the response you 
wish to calculate. For example, if natural frequencies and mode shapes to be calculated, 
you would choose a modal analysis. The following analysis types are available in the 
ANSYS program: static, transient, harmonic, modal, spectrum, buckling, and 
substructuring. Not all analysis types are valid for all disciplines. Modal analysis, for 
example, is not valid for a thermal model. Analysis options allow you to customise the 
analysis type. 

The word “loads” as used in the ANSYS program includes boundary conditions as 
well as other externally and internally applied loads. Loads in the ANSYS program are 
divided into six categories: 
• DOF constraints, 
• forces, 
• surface loads, 
• body loads, 
• inertia loads, 
• coupled-field loads. 
Most of these loads can be applied either on the solid model (keypoints, lines and areas) or 
the finite element model (nodes and elements). 
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Load step options are options that can be changed from load step to load step, such as 
number of substeps, time at the end of a load step, and output controls. A load step is 
simply a configuration of loads for which you obtain a solution. In a structural analysis, for 
example, you may apply wind loads in one load step and gravity in a second load step. 
Load steps are also useful in dividing a transient load history curve into several segments. 
Substeps are incremental steps taken within a load step. They are mainly used for accuracy 
and convergence purposes in transient and nonlinear analyses. Substeps are also known as 
time steps - steps taken over a period of time. 

After SOLVE command, the ANSYS program takes model and loading information 
from the database and calculates the results. Results are written to the results file 
(Jobname.RST, Jobname.RTH, or Jobname.RMG) and also to the database. The difference 
is that only one set of results can reside in the database at one time, whereas all sets of 
results (for all substeps) can be written to the results file. 
 
 
8.4 Review the results 
 

Once the solution has been calculated, you can use the ANSYS postprocessors to 
review the results. Two postprocessors are available: POST 1 and POST 26. 

POST 1, the general postprocessor, is used to review results at one substep (time 
step) over the entire model. You can obtain contour displays, deformed shapes, and tabular 
listings to review and interpret the results of the analysis. Many other capabilities are 
available in POST 1, including error estimation, load case combinations, calculations 
among results data, and path operations. 

POST 26, the time history postprocessor, is used to review results at specific points 
in the model over all time steps. You can obtain graph plots of results data versus time (or 
frequency) and tabular listings. Other POST 26 capabilities include arithmetic calculations, 
and complex algebra. 
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APPENDIX     A typical ANSYS static analysis 
 
 
 
 
 

The goal of this example is to model the problem as shown in Figure A1. This is a 
3D plate model where ANSYS general shell elements will be used to predict the 
displacement and stress behaviour of the plate subjected to concentrated loads from one 
side. The structure is clamped at the left end so that no translations or rotations are allowed 
there. 
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Fig. A1   3D plate model. 

 
 
Material properties: 
a) Isotropic. 
b) Young`s modulus, E=30e6 psi. 
c) Poisson`s ratio, υ=0.3. 
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GEOMETRIC MODELLING 
 
STEP 1: To build geometry of the model more easily, we change the coordinate system 

- from the default decart to cylindrical. 
 
ANSYS Utility Menu 
WorkPlane > Change Active CS to > Global Cylindrical 
 
 
STEP 2: Since the geometry of the model is 3D, we change the display from top view to 

isonometric view. 
 
ANSYS Utility Menu 
Plot Ctrls > Pan,Zoom,Rotate… > Iso 
 
 
STEP 3: Create ten keypoints allocated in corners of the plate by opening the window, 

defining the keypoint number and coordinate values, where X coordinate is 
radius, Y coordinate is angle, Z coordinate is height. 

 
ANSYS Main Menu 
Preprocessor > -Modelling-Create > Keypoints > In Active CS… 
 
Keypoint number    1 
X,Y,Z Location in active CS  0 0 0 
Apply 
 
Keypoint number    2 
X,Y,Z Location in active CS   0 0 4 
Apply 
 
etc. 
 
OK 
 
 
STEP 4: Create thirteen lines by joining two keypoints. You have to specify start and 

end of the line by picking with mouse to keypoints. Keypoints must be joined 
as shown in Figure A2. 

 
ANSYS Main Menu 
Preprocessor > -Modelling-Create > Lines > Straight Line 
 
 
STEP 5: Model four new areas by picking with mouse corresponding four lines as 

shown in Figure A2. 
 
ANSYS Main Menu 
Preprocessor > -Modelling-Create > -Areas-Arbitrary > By Lines 
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Fig. A2   Keypoints, lines and areas of the geometric model. 

 
 
DESCRIPTION OF FINITE ELEMENTS 
 
STEP 6: For the plate model we choose four-node shell element. 
 
Ansys Main Menu 
Preprocessor > Element Type > Add/Edit/Delete…> Add…> Structural Shell 
 
Elastic 4 node 63 
Ok 
Close 
 
 
STEP 7: Plate thickness must be also definite. 
 
Ansys Main Menu 
Preprocessor > Real Constants... > Add... > OK 
 
Shell thickness at node I, J, K, L = 0.1 
Ok 
Close 
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MATERIAL MODELLING 
 
STEP 8: Add material data for the isotropic material: Young`s modulus E=30e6 psi and 

Poisson`s ratio υ=0.3. 
 
Ansys Main Menu 
Preprocessor > Material Props > Constant-Isotropic... 
 
OK 
Young’s modulus    EX=30e6 
Poisson’s ratio (major)   PRXY=0.3 
OK 
 
 
FINITE ELEMENTS MESHING 
 
STEP 9: For smooth mesh we choose all lines divided into three elements excluding the 

division of two long sides divided into eight finite elements. After choosing 
size of the mesh, we allow computer to perform mesh of all marked areas. The 
finite element mesh is presented in Figure A3. 

 
Ansys Main Menu 
Preprocessor > -Meshing-Size Cntrls > Picked Lines 
 
No. of element divisions = 3 
No. of element divisions = 8 
OK 
 
Ansys Main Menu 
Preprocessor > -Meshing-Mesh > -Areas-Free 
 
OK 
 
 
APPLICATION OF LOADS AND BOUNDARY CONDITIONS 
 
STEP 10: Mark the right-side edge nodes and input the value of applied force -0.25 lbs. 

The applied load is shown in Figure A3. 
 
Ansys Main Menu 
Solution > -Loads-Apply > -Structural-Force/Moment > On Nodes 
 
Direction of force/mom   FY 
Apply As     Constant value 
Value      -0.25 
OK 
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STEP 11: Apply boundary conditions to the left-side edge nodes defining no deformation 
and rotation for all nodes. The boundary conditions are shown in Figure A3. 

 
Ansys Main Menu 
Solution > -Loads-Apply > -Structural-Displacement > On Nodes 
 
DOF’s to be constrained  All DOF 
OK 
 
 
SOLUTION 
 
STEP 12: Analysis type is static. Now solution can be started. When the window 

“Solution is done” appears, solution is completed. 
 
Ansys Main Menu 
Solution > Analysis type-New Analysis... > STATIC 
 

OK 
 
Ansys Main Menu 
Solution > -Solve-Current LS 
 
OK 
 
 

 
Fig. A3   Finite element mesh, applied load and boundary conditions. 
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ANALYSIS OF RESULTS 
 
STEP 13: After static analysis you can plot a deformation shape of the plate (Fig. A4). 
 
Ansys Main Menu 
General Postproc > Plot Results > Deformed Shape... 
 
Def + undeformed 
 
 
STEP 14: Besides deformation, stress state of the plate (Fig. A5) can be calculated by 

von Mises theory. 
 
Ansys Main Menu 
General Postproc > Plot Results > -Contour Plot-Nodal Solu... 
 
Item to be contoured  Stress  von Mises SEQV 
OK 
 
 

 
Fig. A4   Deformation shape of the plate. 
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Fig. A5   Stress state of the plate. 
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