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Characteristics of
Dynamic Problems

QO Characteristics of a Dynamic Problem

® Succession of solution is required -
displacement and stresses are time dependent

® Inertia forces are part of the loading system

®* Damping forces are present — damping results
in dissipation of motion

Q Characteristics of a Static Problem

e [oads are time independent

* Magnitude of load is independent of the
response mechanism

Reference Imbsen (1995
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Dynamic vs. Static

m =

mass/unit
P P(t)

length
e

El%la o

O Dynamic

® Resulting displacements are associated with
accelerations which produce inertia forces
resisting the acceleration

Q Static

® Structural responses are function of the ap-
plied loading and are time independent

Reference Imbsen (1995
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D’ Alambert’s
Principle

A system may be set in a state of dynamic
equilibrium by adding to the external
forces a fictitious force which is common-
ly known as the inertia force

Reference Imbsen (1995
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Single-Degree-of-Freedom
System

= mass
stiffness of massless columns

coefficient of viscous damping

o =~ 3
i1
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Idealized 1-Story
Building

Wemg |—» PO Ji P()

fsA fD !

- -

v 1%

vy = displacement

v = Velocity = %

d*>v
dt?

Vv = Acceleration =

CIVL7119/8118 - Dr. Shahram Pezeshk Class Notes 6



Idealized 1-Story
Building

Wemg | PO Ji P()

fi o +f =p@®
my + cv + kv = p(f)

where

f; = Inertia Force of the Mass
fp = Damping Force Acting on the Mass

f¢ = Elastic Force

CIVL7119/8118 - Dr. Shahram Pezeshk Class Notes 7



Undamped Free
Vibration

Q@ Structure vibrates if given an initial
excitation

QO Damping, ¢ =0 and
externally applied load, P(t) = 0,

mv + kv =20

Define

2 —_— k
0y, "
_ /k_
w = e Natural frequency of the system
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Undamped Free
Vibration

Given these initial conditions
Initial displacement = v(f =0) =v,

Initial velocity = v(t =0) =v,
The final solution to the differential equation
v+ Kv =10
VvV + ov =20

becomes

v(t) = VOsma)t + VoCOoSwt
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Definitions

o= /k

Natural frequency of the system (rad/sec)

o T=2Wﬂ=2n’/%

Natural period of vibration (sec)

Q f=207)[=275’/%

Natural cyclic frequency of the system
(1/sec or Hz)
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Undamped Free
Vibration

v(0) oy 12
1 AMPL I TUDE = J[v(o)]2 + [3.})2)_]

TIME, t

DISPLACEMENT, Vv
| v{(0) l
(%)

DEFORMED POSITIONS OF STRUCTURE CORRESPONDING TO'
LOCATIONS 1, 2, 3, 4 AND 5 ON RESPONSE-TIME PLOT

Adopted from Chopra (1980)
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Example
Mass, Stiffness, and Fre-
quency Determination of a

W =50 kips T
12 | W8x24 W10x33 W8x24
Y hitd 20" 207 b
Properties
WI10x33 W8Ex24
A =9.71 in? A =7.08 in?
I =170 in? I = 82.8 in?

Example from Paz (1991
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Example

k v=1
W8Ex24 WI10x33 W8Ex24
_ 3E] _ 12E] T 3El
S A A
QD k =k, = %
L — L 3X(828in% x(29,000 k/in?)

S s
144° in

k, = ky = 2.4k/in

Q k, = 12E1
2 L3
L = 12 X (170 in% x (29,000 k/in?)
? 1443 in3
k, = 19.8 k/in

O k=2xk, +k, = 24.6k/in
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Example

k v=1
W8x24 WI10x33 W8x24

Q Mass
m = Wjg = 50/386.4 = 0.129 Kk —=sec

in

QO Natural frequency of the system

m 0.129 k-sec”™?2 /in

w = 13.8 rad/sec

QO Period of the system
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Damped Free
Vibration

v

UNDAMPED STRUCTURE

. . 0o
W(0)  EXPONENTIAL DECAY (¢
\~ / DAMPED

~ STRUCTURE

>' o~ - — ——
PS 8 - —
£ 3 —-
o TIME, t
SQ
< \_‘
o e \—
o. e — T
b —
o P
——
g o
-
-
-
g T
Tp Adopted from Chopra (1980)

Tp= Natural period of damped structure
wp =Circular frequency of damped structure
fp =Cyclic frequency of damped structure

wp, =w,/1 — &

T, = I

1 - &2
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Damped Free
Vibration

g A
<
a4
2 1.0
g 0.8l E = 2% to 10%
a Range of damping
0.6— for most
structures
04—
0.2 ‘
0 I \ .~
0 0204 06 08 1.0
wp
w

Reference Chopra (1980)
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Sources of
Damping

Q Viscous damping is proportional to the
magnitude of the velocity and acts op-
posite to the direction of motion.

® Internal friction of material

* Bodies moving through fluids, such as air at
low velocities
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Damped Free Vibration
of A SDOF Structure

Q@ Structure vibrates if given an initial
excitation

O Externally applied load P(t) = 0,
mv +cv + kv=20

Solution is of the form
v(t) = Ge!
mGp2eP' + cGpeP' + kGeP' =

mp® + cp + k|GeP! =

mp? +cp +k|=0

2m

2
p=— c -+ [ C ] . ﬁ Characteristic
M Equation
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Damped Free Vibration
of A SDOF Structure

> ()
2
4 o
<0 Oscillatory

Motion
QO Critically Damped Systems

®* Minimum amount damping required to pre-
vent structure from oscillating

2
| _k =
Zm] m =0
Cor = 2m % = 2/ km
Cor = 2m % = 2mw

c.r = critical damping coefficient
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Damping Ratio

c.r = critical damping coefficient

Cor = Zm/g = 2mw

O Critical damping ratio

= C = _C¢C
3 Cer 2mw
§ = critical damping ratio

® Damping ratio is determined experimentally
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Evaluation of Damping
Logarithmic Decrement

O Consider the damped free vibration
test

V(1) A v, i
2
W\/I\\/‘%\
t

= 1n/Y1] = (1)
) m[Vz] 27E
or 1 v
) %m[vi +k] Q& 2)
Q Steps

1. Disturb the structure with an initial displacement
Record motion
Measure T

Measure v; and vj,x
Use Eq. (1) or (2) to find 8 and &

A

Reference Chopra (1980)
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Damped Free Vibration
of a SDOF System

O Iif c<ceyg or

2
<1 _k
[Zm] m <0

The solution to the differential equation

mv +cv +kv=20

will be

v(t) = e M|y coswpt +
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Displacement of the System
Due to Ground Motion

Vi = Vg £V

where
v; = Total displacement of the mass

ve = Ground displacement
v = Relative displacement
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Equation of Motion

mVe +V) +cv + kv =0

where
Vo = Ground acceleration
myv + cv + kv = —mvg = P (1)

|14 P eﬁ‘(t) = —mi)g

\ N \
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Response to Harmonic
Excitation

P (f) = -mvsinwt
W P (1) = F,sinwt

TT

Vo(f) = VgSinmi

P ( / ) A Reference Imbsen (1995)

FO= —mi}g——/\— —————

mv + cv + kv = F,sinwt

where

w = Frequency of input motion

F, = Amplitude of input motion
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Response to Harmonic
Excitation

P (f) = -mvsinwt
W P (1) = F,sinwt

TT

Vo(f) = VgSinmi

MAXIMUM FORCE p0

HARMONIC FORCE p(t) = pO sin wt

/ 1N\
\

/
// W / W //’
/ / /
/.

/ L p1spLACEMENT \_
AMPLITUDE u
max

HARMONIC MOTION u(t) = umaxsm(wt - 9)

Adopted from Chopra (1980)
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Forced Vibration -
Harmonic Excitation

my +cv +kv =-mv,sinwt = F sinwt
Q Solution of Differential Equation
vV = VetV
ve = Complementary solution

vy, = Particular solution

Q Damped system
Ve = e“thﬁXcosa)Dt + Bsinw i)

Transient response - in a damped system the
free vibration response of the complementary
solution decays becoming insignificant

_ vy sin(owt — 0)
/(L = )7 + (2Ery?

Particular solution or the steady state re-
sponse
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Steady State
Response

v(t) = vgDsin(wt —0)

p =Y — 1
Vst /(1 = 1))2 + (28r)2

where
D = Dynamic magnification factor

”':

SIS

vy = Equivalent static displacement

0 =tan !

1 —r2

2&r ]
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Dynamic Magnification
Factor

- 1
’ /(1 =13 + (26r)?

I I I T T I T

/uSt

max
T

RESPONSE FACTOR D = u

RATIO OF FORCING FREQUENCY TO
NATURAL FREQUENCY, B = ©/w

Adopted Chopra (1980)
Note:

r =0 D —=1 —=0 v=y,
dynamic effects are negligible

r =1 =>D =1 Resonance

28
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Band width (Half-Power)
to Evaluate Damping

Q Procedure

1. Determine natural vibration frequency
as the forcing frequency at resonance
2. Measure half-power band width

3. Compute & = (half power band width) x %

T T I T [ T T
5
+
wn
S R
x
@
1<
> w
I E
a 3 -1 Q 5
S < E
2 1832
< >
e - =
w2 R
@ @ o
Z : g
a -4 < o
n —
W =
o 1 HALF-POWER ] <z(
BAND WIDTH = 2& S
w
r_ =
o]
0 1 2 3 N

RATIO OF FORCING FREQUENCY TO
NATURAL FREQUENCY, B = @/w

Adopted Chopra (1980)
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Displacement
Response Spectrum

EL CENTRO,
SOOE COMPONENT,

Z -0.bg MAY 18, 1940
o = o~
Z g ¥
G W oghg | | 3 Adopted Chopra (1980)

< 0 10 20 30

TIME, sec

Q The response of a SDOF structure to
earthquake ground motion can be written as

mv +cv + kv = -miig

the solution

0 =-w_1D ii ge 5 Dsin(w p(t-1))dr

0

This is called Duhamel’s Integral
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Equivalent Lateral
Forces

W _ L=k = w*mv(t)

|

U V, = Base Shear
M,

Q Static Analysis
VO =f S

M, = hf

Reference Chopra (1980)
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Response Spectrum

Fmax = 1}1ax|r(t)|

Where r(t) can be displacement, velocity, or
acceleration.

Q Response spectrum is a plot of 7, as a
function of 7 or w or f.

e Displacement Response Spectrum

r =V
S4 = Vmax

e Psuedo-Velocity Response Spectrum
Sy = WS,

e Psuedo-Acceleration Response Spectrum

S, =a)25d =ws,
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Displacement
Response Spectrum

EL CENTRO,
SOOE COMPONENT,

Z -0.4g MAY 18, 1940
o = o~
255,
O w o
g 33
P 0.4g L L N
< 0 10 20 30
TIME, sec
10—
umax = 2.148 in.
T = 0.5 sec c
£ = 0.02 T | | | g
2 101
=
- 0 '
T =1 sec :—: Umnmax = 6.61 in.
£=0.02 = -10 | 1 ]
@]
w10
[
T = 2 == 0
= 2 sec V
£ =0.02 -10 B Umai 8.8411n.
0 10 20 30}
TIME, sec
20 T T T T T
DEFORMATION
. 15+ (OR DISPLACEMENT)
< RESPONSE SPEt:TRur:/,—/\1
10t & = 2 PERCENT .
m'U \’\/‘; 4 J
S_Zg’ﬁ* —/)
0 1 1
0 1 2 3

NATURAL VIBRATION PERIOD, T, sec

Adopted from Chopra (1980)
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Displacement, Velocity,
and Acceleration Response
Spectrum

20 T T T T

Sd, in.

50 T T T
Lo -

(b)
20+ _

, in./sec
W
o
I
!

(c)

0 ! 1 | I
0 1 2 3
NATURAL VIBRATION PERIOD, T, sec

Adopted from Chopra (1980)
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Response Spectrum

20

hi L
6 8 10

S TR
06 08 |

400

2

04

NATURAL VIBRATION PERIOD, sec

36
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Multiple Degree of
Freedom Structures

ms _u;

ks
¢ &

k>
m _%1

ki

lumped mass MDOF system.
_ _ ru A
kl + k2 _kz O 1 -ml
_k2 k2 -+ k3 _k3 I/lz L -+ O
ky K 0
O ’ 3- gu34 )

[m{u} +[k{u} ={F}

Q Equation of motion for an undamped and

~

~
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Natural Frequency and
Modes of Vibration

Assume system can vibrate in periodic manner

(@}; ={¢p}iAsinwt +Bcoswt )

where

{¢}, = 1th mode shapes

w; = 1th natural frequency of vibration

Q Substitute in the equation of motion and simpli-
fy results in Eigen-Problem

[kl{¢}; = wim]{p},

where

[k] = Stiffness Matrix

[m] = Mass Matrix
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Damping
MDOF Systems

where

@ ;p = ith natural frequency of vibration

T ;p = Ith period of vibration of a damped system

§ ; = ith mode damping ratio

39
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Mode Shapes

13
L 12p?
54321 3N
-u3 t
o N
2N
)UZ [ t
el T
.ul 1 \\ t
T] = 2n/w]
D|SPLACEMENTS RESPONSE HISTORY
AT SELECTED
TIMES
(a) First mode 1
2
3
‘ 4
" 5
u
54321 3 /\
*u} t
N LI V\/
2, 2y NN
»>u 2 t
2 \/ \V
u
1117 /\ /\
» U t
! V VNV V
T2 = Zn/w2

DISPLACEMENTS RESPONSE HISTORY
AT SELECTED
TIMES

(b) Second mode

NANS

\W \VAA VAR VALV R
AAAAAA
VARV,
ANAAANT,
VY

T3 = 2n/w

v
f =
S

3

DISPLACEMENTS RESPONSE HISTORY
AT SELECTED
TIMES

(c) Third mode

Adopted from Chopra (1980)
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Free Vibration Response
of a MDOF System

12 3
“3
23 1
u
2
.o, / \v\/\v/\vv/\v/\vvf\ V/ .
u
1
> U] Vf\\/ Vr\v/\\//\vl\v/\v/\ VQ t

DE FORMED
POSITIONS

AT TIME [NSTANTS
1, 2 AND 3

Adopted from Chopra (1980)
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Modal Superposition
Method

[ml{u} +[c{u} + [k{u} =~[m][1]u,

where

= =

1] =1

\1J

i, = ground acceleration

e Coupled 2nd order ODE
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Uncoupling the
Equations

[ml{u} +[c{u} + [k{u} =~[m][1]u,

{up = [pl{Y}

N
{u}p = EYi{¢}i ={oh Y, H{p}Y, + .. F{P}NYy
i=1

{u} = [p[{Y}
i} = [¢]{YV}
where

{Y} = Normalized coordinates
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Uncoupling the
Equations

[ml{u} +[c{u} + [k{u} =~[m][1]u,

{pY [m){H{Y} + {9} [cHp Y} +{o} [K{p}{Y} =
~{@} [m][1]iig
e Mode Shapes are orthogonal
M" ifi =]
{9} [m{8}; =,

0 if ix=j

Q  Triple matrix multiplications change into
diagonal matrices resulting in the following
uncouple differential equation

M;Y; +C;Y; +K;Y, =-{¢}][m][1]iig

l

where the following are the generalized properties

M; ={¢}[m){¢};
i ={9}ilcHo),
K; ={p}i[kl{9},
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EQUATION FOR A GIVEN
MODE SHAPE

M;Y; +C;Y; +K;Y; =-{¢}m][1]iig
Define
L, = —{ @}/ [M][1] = Participation Factor

Divide by M; gives

M:

l
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RESPONSE SPECTRA

Y|max =S SDOF Systems
Y max = []611* \ MDOF Systems
i

where

Sy, = Sdi(ngi)

l

Modal contribution to the maximum response at
kth D.O.F, (ux) max:

(U max = 2 Ui = 2 @l Yilmax = 2 ¢ki[jl\;k]Sdi
i=1 i=1 i=1

l

Jin = jLW’;wnSVHmk¢kn

I = 0 SfM [l

CIVL7119/8118 - Dr. Shahram Pezeshk Class Notes 46



Earthquake Response
of a 3-Story Building

—» U

- u

—v

0

(a) lIdealized three-story building

5 1st Mode Response

5L u,, = L.91 in.
5r 2nd Mode Response

Total Response

TIME, sec

(c) Roof displacement

Adopted from Chopra (1980)
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Earthquake Response
of a 3-Story Building

0.hg

(b) EIl Centro ground motion — SOOE Component
May 18, 1940

300~ 1st Mode Response

| % = 264 Kips

-300 01
300 2nd Mode Response

VO2 0-MMMN%N%N%NﬁNmNmN%NMMfrkdvﬂMﬁv
V., = 188 kips
-300 L 02
300 3rd Mode Response

. Vo3 = L5 kips
03 0 AN AN WA
'300L- Total Response -
300 VO = 346 kips
Yo 0
-300L
{ | ! |
0 10 20 30

TIME, sec

(d) Base shear

Adopted from Chopra (1980)
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Combination of Modal
Response Maxima

Q  Combining modal responses by

e SRSS = Square Root of the Sum of the
Squares

e CQC = Complete Quadratic Combination
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