Basic Structural Dynamics and Seismic Analysis

Shahram Pezeshk, Ph.D., P.E.

Associate Professor
The University of Memphis, Department of Civil Engineering,
Campus Box 526570
Memphis, TN 38152-6570
Phone: (901) 678-4727
Email: s-pezeshk@memphis.edu

References

Most of this presentation has been adopted from the following references:

Imbsen, R.A. (1981). "Seismic Design of Highway Bridges," FHWA-IP-81-2, Federal Highway Administration, January.

Imbsen, R.A. (1995). "Seismic Design of Highway Bridges," ASCE, Training Course, New York.

Chopra, A.K. (1980). **Dynamics of Structures, A Primer**, Earthquake Engineering Research institute.

Chopra, A.k. (1995). **Dynamics of Structures, Theory and Applications to Earth-quake Engineering** Prentice Hall.

Chopra, A.K. "Soil and Structure Response to Earthquakes – Introduction to Structural Dynamics," EERI, Video Part I &2.

Paz, M. (1991). Structural Dynamics, Theory and Computation. Van Nostrand Reinhold, New York.

Characteristics of Dynamic Problems

- Characteristics of a Dynamic Problem
 - Succession of solution is required –
 displacement and stresses are time dependent
 - Inertia forces are part of the loading system
 - Damping forces are present damping results in dissipation of motion
- Characteristics of a Static Problem
 - Loads are time independent
 - Magnitude of load is independent of the response mechanism

Reference Imbsen (1995)

Dynamic vs. Static

Dynamic

• Resulting displacements are associated with accelerations which produce inertia forces resisting the acceleration

Static

• Structural responses are function of the applied loading and are time independent

Reference Imbsen (1995)

D'Alambert's Principle

A system may be set in a state of dynamic equilibrium by adding to the external forces a fictitious force which is commonly known as the inertia force

Reference Imbsen (1995

Single-Degree-of-Freedom System

m = mass

k = stiffness of massless columns

c = coefficient of viscous damping

Idealized 1-Story Building

v = displacement

$$\dot{v}$$
 = Velocity = $\frac{dv}{dt}$

$$\ddot{v}$$
 = Acceleration = $\frac{d^2v}{dt^2}$

Idealized 1-Story Building

$$f_I + f_D + f_s = p(t)$$

$$m\ddot{v} + c\dot{v} + kv = p(t)$$

where

 f_I = Inertia Force of the Mass

 f_D = Damping Force Acting on the Mass

 $f_{S} = Elastic Force$

Undamped Free Vibration

- Structure vibrates if given an initial excitation
- O Damping, c = 0 and externally applied load, P(t) = 0,

$$m\ddot{v} + kv = 0$$

or

$$\ddot{v} + \frac{k}{m}v = 0$$

Define

$$\omega^2 = \frac{k}{m}$$
 $\omega = \sqrt{\frac{k}{m}}$ Natural frequency of the system

Undamped Free Vibration

Given these initial conditions

Initial displacement =
$$v(t = 0) = v_0$$

Initial velocity =
$$\dot{v}(t=0) = \dot{v}_0$$

The final solution to the differential equation

$$\ddot{v} + \frac{k}{m}v = 0$$

$$\ddot{v} + \omega^2 v = 0$$

becomes

$$v(t) = \frac{\dot{v}_0}{\omega} \sin \omega t + v_0 \cos \omega t$$

Definitions

$$\circ \ \omega = \sqrt{\frac{k}{m}}$$

Natural frequency of the system (rad/sec)

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

Natural period of vibration (sec)

$$\circ \quad f = \frac{\omega}{2\pi} = 2\pi \sqrt{\frac{k}{m}}$$

Natural cyclic frequency of the system (1/sec or Hz)

Undamped Free Vibration

DEFORMED POSITIONS OF STRUCTURE CORRESPONDING TO LOCATIONS 1, 2, 3, 4 AND 5 ON RESPONSE-TIME PLOT

Adopted from Chopra (1980)

Example Mass, Stiffness, and Frequency Determination of a SDOF

Properties

W10x33

 $A = 9.71 in^2$

 $I = 170 \text{ in}^4$

W8x24

 $A = 7.08 in^2$

 $I = 82.8 \text{ in}^4$

Example from Paz (1991

Example

$$k_1 = k_3 = \frac{3EI}{L^3}$$

$$k_1 = k_3 = \frac{3 \times (82.8 \text{ in}^4) \times (29,000 \text{ k/in}^2)}{144^3 \text{ in}^3}$$

$$k_1 = k_3 = 2.4 \text{ k/in}$$

$$k_2 = \frac{12EI}{L^3}$$

$$k_2 = \frac{12 \times (170 \text{ in}^4) \times (29,000 \text{ k/in}^2)}{144^3 \text{ in}^3}$$

$$k_2 = 19.8 \text{ k/in}$$

$$k = 2 \times k_1 + k_2 = 24.6 \, \text{k/in}$$

Example

Mass

$$m = W/g = 50/386.4 = 0.129 \frac{k - sec^2}{in}$$

Natural frequency of the system

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{24.6 \text{ k/in}}{0.129 \text{ k-sec}^2/\text{in}}}$$

$$\omega = 13.8 \text{ rad/sec}$$

Period of the system

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{13.8} = 0.45 \text{ sec}$$

Damped Free Vibration

 T_D = Natural period of damped structure ω_D = Circular frequency of damped structure f_D = Cyclic frequency of damped structure

$$\omega_D = \omega \sqrt{1 - \xi^2}$$

$$T_D = \frac{T}{\sqrt{1 - \xi^2}}$$

Sources of Damping

- Viscous damping is proportional to the magnitude of the velocity and acts opposite to the direction of motion.
 - Internal friction of material
 - Bodies moving through fluids, such as air at low velocities

Damped Free Vibration of A SDOF Structure

- Structure vibrates if given an initial excitation
- Externally applied load P(t) = 0,

$$m\ddot{v} + c\dot{v} + kv = 0$$

Solution is of the form

$$v(t) = Ge^{pt}$$

$$mGp^{2}e^{pt} + cGpe^{pt} + kGe^{pt} = 0$$

$$[mp^{2} + cp + k]Ge^{pt} = 0$$

$$[mp^{2} + cp + k] = 0$$

$$p = -\frac{c}{2m} \pm \sqrt{\left[\frac{c}{2m}\right]^{2} - \frac{k}{m}} Characteristic Equation$$

Damped Free Vibration of A SDOF Structure

$$\left[\frac{c}{2m}\right]^2 - \frac{k}{m} = \begin{cases} > 0 \\ = 0 \end{cases}$$

$$< 0$$
Oscillatory
Motion

- Critically Damped Systems
 - Minimum amount damping required to prevent structure from oscillating

$$\left[\frac{c}{2m}\right]^2 - \frac{k}{m} = 0$$

$$c_{cr} = 2m\sqrt{\frac{k}{m}} = 2\sqrt{km}$$

$$c_{cr} = 2m\sqrt{\frac{k}{m}} = 2m\omega$$

$$c_{cr} = critical damping coefficient$$

Damping Ratio

 $c_{cr} = critical damping coefficient$

$$c_{cr} = 2m\sqrt{\frac{k}{m}} = 2m\omega$$

• Critical damping ratio

$$\xi = \frac{c}{c_{cr}} = \frac{c}{2mw}$$

 ξ = critical damping ratio

• Damping ratio is determined experimentally

Evaluation of Damping Logarithmic Decrement

 Consider the damped free vibration test

$$\delta = \ln \left[\frac{v_1}{v_2} \right] = 2\pi \xi \tag{1}$$

or

$$\delta = \frac{1}{k} \ln \left[\frac{v_i}{v_{i + k}} \right] = 2\pi \xi \tag{2}$$

- Steps
 - 1. Disturb the structure with an initial displacement
 - 2. Record motion
 - 3. Measure T
 - 4. Measure v_i and v_{i+k}
 - 5. Use Eq. (1) or (2) to find δ and ξ

Reference Chopra (1980)

Damped Free Vibration of a SDOF System

$$\begin{array}{ccc}
\text{if} & c < c_{cr} & \text{or} \\
\left[\frac{c}{2m}\right]^2 - \frac{k}{m} < 0
\end{array}$$

The solution to the differential equation

$$m\ddot{v} + c\dot{v} + kv = 0$$

will be

$$v(t) = e^{-\xi wt} \left[v_0 \cos \omega_D t + \frac{\dot{v}_0 + \xi \omega v_0}{\omega_D} \sin \omega_D t \right]$$

Displacement of the System Due to Ground Motion

$$v_t = v_g + v$$

where

 $v_t = Total displacement of the mass$

 $v_g = Ground displacement$

v = Relative displacement

Equation of Motion

$$m(\ddot{v}_g + \ddot{v}) + c\dot{v} + kv = 0$$

where

$$\ddot{v}_g = Ground \ acceleration$$

$$m\ddot{v} + c\dot{v} + kv = -m\ddot{v}_g = P_{eff}(t)$$

Response to Harmonic Excitation

 $m\ddot{v} + c\dot{v} + kv = F_0 \sin \overline{\omega} t$

where

 $\overline{\omega} = Frequency of input motion$

 $F_0 = Amplitude of input motion$

Response to Harmonic Excitation

Forced Vibration – Harmonic Excitation

$$m\ddot{v} + c\dot{v} + kv = -m\ddot{v}_g \sin \overline{\omega}t = F_0 \sin \overline{\omega}t$$

Solution of Differential Equation

$$v = v_c + v_p$$

 $v_c = Complementary solution$
 $v_p = Particular solution$

• Damped system

$$v_c = e^{-\xi wt} \left(A \cos \omega_D t + B \sin \omega_D t \right)$$

Transient response – in a damped system the free vibration response of the complementary solution decays becoming insignificant

$$v_p = \frac{v_{st}\sin(\overline{\omega}t - \theta)}{\sqrt{(1 - r^2)^2 + (2\xi r)^2}}$$

Particular solution or the steady state response

Steady State Response

$$v(t) = v_{st} D \sin(\overline{\omega}t - \theta)$$

$$D = \frac{v(t)}{v_{st}} = \frac{1}{\sqrt{(1 - r^2)^2 + (2\xi r)^2}}$$

where

D = Dynamic magnification factor

$$r = \overline{\underline{\omega}}$$

 $v_{st} = Equivalent static displacement$

$$\theta = \tan^{-1} \left[\frac{2\xi r}{1 - r^2} \right]$$

Dynamic Magnification Factor

$$D = \frac{1}{\sqrt{(1 - r^2)^2 + (2\xi r)^2}}$$

Adopted Chopra (1980)

Note:

$$r \rightarrow 0$$
 $D \rightarrow 1 \rightarrow 0$ $v = v_{st}$ dynamic effects are negligible

$$r \to 1 = D = \frac{1}{2\xi}$$
 Resonance

Band width (Half-Power) to Evaluate Damping

Procedure

- 1. Determine natural vibration frequency as the forcing frequency at resonance
- 2. Measure half-power band width
- 3. Compute $\xi = (\text{half power band width}) \times \frac{1}{2}$

Adopted Chopra (1980)

Displacement Response Spectrum

• The response of a SDOF structure to earthquake ground motion can be written as

$$m\ddot{v} + c\dot{v} + kv = -m\ddot{u}_g$$

the solution

$$v(t) = -\frac{1}{\omega_D} \int_0^t \ddot{u}_g e^{-\xi\omega(t-\tau)} \sin(\omega_D(t-\tau)) d\tau$$

This is called **Duhamel's Integral**

Equivalent Lateral Forces

Static Analysis

$$V_0 = f_s$$

$$M_0 = hf_s$$

Reference Chopra (1980)

Response Spectrum

$$r_{\max} = \max_{t} |r(t)|$$

Where r(t) can be displacement, velocity, or acceleration.

- Response spectrum is a plot of r_{max} as a function of T or ω or f.
 - Displacement Response Spectrum

$$r = v$$
 $s_d = v_{\text{max}}$

- Psuedo-Velocity Response Spectrum $s_v = \omega s_d$
- Psuedo-Acceleration Response Spectrum

$$s_a = \omega^2 s_d = \omega s_v$$

Displacement Response Spectrum

Displacement, Velocity, and Acceleration Response Spectrum

Response Spectrum

Multiple Degree of Freedom Structures

 Equation of motion for an undamped and lumped mass MDOF system.

$$\begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} \begin{bmatrix} \ddot{u}_1 \\ \ddot{u}_2 \\ \ddot{u}_3 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$

$$[m]\{\ddot{u}\} + [k]\{u\} = \{F\}$$

Natural Frequency and Modes of Vibration

Assume system can vibrate in periodic manner

$$\{y(t)\}_i = \{\phi\}_i / A \sin \omega_i t + B \cos \omega_i t$$
where

 $\{\phi\}_i$ = ith mode shapes

 ω_i = ith natural frequency of vibration

○ Substitute in the equation of motion and simplify results in Eigen-Problem

$$[k]\{\phi\}_i = \omega_i^2[m]\{\phi\}_i$$

where

$$[k] = Stiffness Matrix$$

$$[m] = Mass Matrix$$

38

Damping MDOF Systems

$$\omega_{iD} = \omega_{iV} / 1 - \xi_i^2$$

$$T_{iD} = \frac{T_i}{\sqrt{1 - \xi_i^2}}$$

where

 $\omega_{\it iD}$ = ith natural frequency of vibration

 T_{iD} = ith period of vibration of a damped system

 ξ_i = ith mode damping ratio

Mode Shapes

Free Vibration Response of a MDOF System

Adopted from Chopra (1980)

Modal Superposition Method

$$[m]\{\ddot{u}\} + [c]\{\dot{u}\} + [k]\{u\} = -[m][1]\ddot{u}_g$$

where

$$[1] = \begin{cases} 1 \\ 1 \\ \vdots \\ 1 \end{cases}$$

 \ddot{u}_g = ground acceleration

• Coupled 2nd order ODE

Uncoupling the Equations

$$[m]\{\ddot{u}\} + [c]\{\dot{u}\} + [k]\{u\} = -[m][1]\ddot{u}_g$$

$$\{u\} = [\phi]\{Y\}$$

$$\{u\} = \sum_{i=1}^{N} Y_i \{\phi\}_i = \{\phi\}_1 Y_1 + \{\phi\}_2 Y_2 + \dots + \{\phi\}_N Y_N$$

$$\{\dot{u}\} = [\phi]\{\dot{Y}\}$$

$$\{\ddot{u}\} = [\phi]\{\ddot{Y}\}$$

where

 ${Y}$ = Normalized coordinates

Uncoupling the Equations

$$[m]\{\ddot{u}\} + [c]\{\dot{u}\} + [k]\{u\} = -[m][1]\ddot{u}_g$$

$$\{\phi\}^{T}[m]\{\phi\}\{\ddot{Y}\} + \{\phi\}^{T}[c]\{\phi\}\{\dot{Y}\} + \{\phi\}^{T}[k]\{\phi\}\{Y\} = -\{\phi\}^{T}[m][1]\ddot{u}_{g}$$

Mode Shapes are orthogonal

$$\{\phi\}_i^T[m]\{\phi\}_j = \begin{cases} M^* & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Triple matrix multiplications change into diagonal matrices resulting in the following uncouple differential equation

$$M_i^* \ddot{Y}_i + C_i^* \dot{Y}_i + K_i^* Y_i = -\{\phi\}_i^T [m][1] \ddot{u}_g$$

where the following are the generalized properties

$$M_{i}^{*} = \{\phi\}_{i}^{T}[m]\{\phi\}_{i}$$

$$C_{i}^{*} = \{\phi\}_{i}^{T}[c]\{\phi\}_{i}$$

$$K_{i}^{*} = \{\phi\}_{i}^{T}[k]\{\phi\}_{i}$$

EQUATION FOR A GIVEN MODE SHAPE

$$M_i^* \ddot{Y}_i + C_i^* \dot{Y}_i + K_i^* Y_i = -\{\phi\}_i^T [m][1] \ddot{u}_g$$

Define

$$L_i = -\{\phi\}_i^T[M][1] = Participation Factor$$

Divide by M_i^* gives

$$\ddot{Y}_i + 2\xi \omega_i \dot{Y}_i + \omega_i^2 Y_i = -\left[\frac{L_i}{M_i^*}\right] \ddot{u}_g$$

RESPONSE SPECTRA

$$|Y|_{\text{max}} = S_d \qquad SDOF \, Systems$$

$$|Y_i|_{\text{max}} = \left[\frac{L_i}{M_i^*}\right] S_{d_i} \qquad MDOF \, Systems$$

where

$$S_{d_i} = S_{d_i}(\xi, T_i)$$

Modal contribution to the maximum response at kth D.O.F, (u_k) max:

$$(u_k)_{\max} = \sum_{i=1}^n U_{ki} = \sum_{i=1}^n \phi_{ki} |Y_i|_{\max} = \sum_{i=1}^n \phi_{ki} \left[\frac{L_i}{M_i^*} \right] S_{d_i}$$

$$f_{kn} = \frac{L_n}{M_n} \omega_n S_{vn} m_k \phi_{kn}$$

$$\langle f_n \rangle = \frac{L_n}{M_n} \omega_n S_{vn} / M / \langle \phi_n \rangle$$

Earthquake Response of a 3-Story Building

Earthquake Response of a 3-Story Building

Combination of Modal Response Maxima

- Combining modal responses by
 - SRSS = Square Root of the Sum of the Squares
 - CQC = Complete Quadratic Combination